
©
 C

o
p

y
ri

g
h

t 
2

0
2

4
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
4

.6
0

.0
2

.0
2

Revista Mexicana de Astronomı́a y Astrof́ısica, 60, 217–226 (2024)

c© 2024: Instituto de Astronomı́a, Universidad Nacional Autónoma de México
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ABSTRACT

This paper investigated two scalar field cosmological models in f(R, T ) gravity
with cosmic transit and varying cosmological constant Λ(t). The cosmological con-
stant tends to have a tiny positive value at the current epoch. The scalar field pres-
sure pϕ shows a sign flipping for normal scalar field. For the phantom field, the scalar
potential V (ϕ) is negative and the energy density ρϕ = Ek+V takes negative values
when the equation of state parameter ωϕ is less than −1. The WEC, ρ =

∑
i ρi ≥ 0

and pi + ρi ≥ 0, is not violated but with an instability for the second model at late
times. For a scalar field ϕ, the condition ρϕ + pϕ = ρϕ(1 + ωϕ) = 2Ek ≥ 0 allows
for ρϕ < 0 if ωϕ < −1. The causality and energy conditions have been discussed for
both models. The cosmology in both models was studied using a given function a(t)
derived from the desired cosmic behavior, which is the opposite of the traditional
view.

RESUMEN

Investigamos dos modelos cosmológicos de campo escalar suponiendo
gravedad f(R, T ), con tránsito cósmico y constante cosmológica Λ(t) variable. La
constante cosmológica tiende a un valor pequeño y positivo en el presente. La
presión del campo escalar pϕ cambia de signo para un campo escalar normal. Para
el campo fantasma, el potencial escalar V (ϕ) es negativo y la densidad de enerǵıa
ρϕ = Ek + V adquiere valores negativos cuando el parámetro ωϕ de la ecuación de
estado es menor que −1. No se viola la WEC, ρ =

∑
i ρi ≥ 0 y pi + ρi ≥ 0, pero se

obtiene una inestabilidad en el segundo modelo, a tiempos tard́ıos. Para un campo
escalar ϕ, la condición ρϕ + pϕ = ρϕ(1 + ωϕ) = 2Ek ≥ 0 permite una ρϕ < 0 si
ωϕ < −1. Se discuten las condiciones de causalidad y enerǵıa para ambos modelos.
Se estudia la cosmoloǵıa en ambos modelos con una función dada a(t) derivada del
comportamiento cósmico deseado, lo cual es contrario a la visión tradicional.

Key Words: cosmological parameters — cosmology: theory — dark energy

1. INTRODUCTION

Accelerated cosmic expansion (Percival et al.
2001; Stern et al. 2010) has become a basic motiva-
tion for a variety of modified gravitational theories
(Nojiri & Odintsov 2006; Nojiri et al. 2008; Ferraro
& Fiorini 2007; Bengochea & Ferraro 2009; De Felice
& Tsujikawa 2010; Alves et al. 2011; Maeder 2017;
Gagnon & Lesgourgues 2011; Ahmed 2009, 2010;
Ahmed & Pradhan 2022; Ahmed & Kamel 2021).

1Mathematics and Statistics Department, Faculty of Sci-
ence, Taibah University, Saudi Arabia.

2Astronomy Department, National Research Institute of
Astronomy and Geophysics, Helwan, Cairo, Egypt.

In order to find a satisfactory explanation, an exotic
form of energy with negative pressure, called dark
energy, was hypothesized. Several dynamical scalar
fields models of dark energy were introduced such
as Quintessence, Phantom and Tachyons (Tsujikawa
2013; Kamenshchik et al. 2001; Caldwell 2002; Chiba
et al. 2000; Sen 2002; Arkani-Hamed et al. 2004;
Ahmed et al. 2023). For a zero curvature FRW uni-
verse driven by a scalar field ϕ, Einstein’s equations
are

3H2 =
1

2
ϕ̇2+V (ϕ), Ḣ = −1

2
ϕ̇2, ϕ̈+3Hϕ̇+V ′ = 0.

(1)
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With units 8πM−2
Pl = c = 1. H = ȧ

a is the Hubble
parameter and V (ϕ) is the potential. The prime de-
notes differentiation with respect to ϕ, and the dots
denote differentiation with respect to t. While this
nonlinear system is insoluble in general, progress can
be made through postulating a particular form of the
scale factor a(t) and then obtaining the form of both
ϕ(t) and V (ϕ) (Barrow & Parsons 1995; Ellis & Mad-
sen 1991). In Banerjee & Pavón (2001), it was shown
that a minimally coupled scalar field in Brans-Dicke
theory leads to an accelerating universe. A power
function forms of the scale factor a and the scalar
field ϕ were assumed as

a(t) = a1t
α, ϕ(t) = ϕ1t

β , (2)

with a1, ϕ1, α and β constants. An accelerated ex-
pansion was also achieved in a modified Brans-Dicke
theory through considering the following power-law
form of both a and ϕ (Bertolami & Martins 2000).

a(t) = a0

(
t

t0

)α

, ϕ(t) = ϕ0

(
t

t0

)β

. (3)

Cosmology in the scalar-tensor f(R, T ) gravity has
been studied in Gonçalves et al. (2022) where three
particular forms of a(t) have been used.

1.1. Negative Potentials and Energy Densities

The case of negative potential cosmologies has
become interesting after the prediction of Ads spaces
in string theory and particle physics. Negative po-
tentials also exist in ekpyrotic and cyclic cosmo-
logical models in which the universe goes from a
contracting to an accelerating phase (Steinhardt &
Turok 2002; Khoury et al. 2001). They are com-
monly predicted in particle physics, supergravity and
string theory where the general vacuum of super-
gravity has a negative potential. It has also been
suggested that negative potentials lead to an expla-
nation of the cosmological scale in terms of a high en-
ergy scale such as the supersymmetry breaking scale
or the electroweak scale (Garriga & Vilenkin 2000).
A detailed discussion of scalar field cosmology with
negative potentials was carried out in Felder et al.
(2002). The effect of negative energy densities on
classical FRW cosmology has been investigated in
Nemiroff et al. (2015) where the total energy den-
sity can be expanded as

ρ =

∞∑
n=−∞

ρ+n a
−n +

∞∑
m=−∞

ρ−ma−m, (4)

where ρ+n is the familiar positive energy density and
ρ−m is the negative cosmological energy density. The

cosmic evolution with negative energy densities was
also examined in Saharian et al. (2022) where vac-
uum polarization was mentioned as an example for a
gravitational source with ρ < 0 that may have played
a significant role in early cosmic expansion.

An interesting study was carried out in De La
Macorra & Germán (2022) where the equation of
state parameter is negative (ωϕ = pϕ/ρϕ < −1)
with no violation of the weak energy condition
(ρ =

∑
i ρi ≥ 0 & pi + ρi ≥ 0) which requires a neg-

ative potential V (ϕ) < 0. It has been shown that
ρϕ = 1

2 ϕ̇
2 + V (ϕ) becomes negative with ωϕ < −1,

the negative ρϕ leads to a small value of the cos-
mological constant. However, while cosmic expan-
sion exists in such scenario, the negative potential V
leads to a collapsing universe.

The classical energy conditions are “the null en-
ergy condition (NEC) ρ + p ≥ 0; weak energy con-
dition (WEC) ρ ≥ 0, ρ + p ≥ 0; strong energy con-
dition (SEC) ρ + 3p ≥ 0 and dominant energy con-
dition (DEC) ρ ≥ |p|”. Since the SEC implies that
gravity should always be attractive, this condition
fails in the accelerating and inflation epochs (Visser
1997a,b). As was mentioned in Barceló et al. (2002),
even the simplest scalar field theory we can write
down violates the SEC. The NEC is the most fun-
damental energy condition on which the singularity
theorems, and other key results, are based (Alexan-
dre & Polonyi 2021). If the NEC is violated, all
other point-wise energy conditions (ECs) are auto-
matically violated. A very useful discussion about
the validity of classical linear ECs was given in Bar-
celó et al. (2002) where it was shown that these clas-
sical conditions cannot be valid in general situations.
The scalar field potential V (ϕ) is restricted by the
ECs where the scalar field ϕ ( with ρϕ = 1

2 ϕ̇
2+V (ϕ)

& pϕ = 1
2 ϕ̇

2 − V (ϕ) ) satisfies the NEC for any

V (ϕ), the WEC if and only if V (ϕ) ≥ − 1
2 ϕ̇

2, the
DEC if and only if V (ϕ) ≥ 0, the SEC if and only if
V (ϕ) ≤ ϕ̇2. The detailed proof of this theorem can
be found in Westmoreland (2013).

1.2. Λ(t) Models

A new model for the time-dependent cosmologi-
cal constant Λ(t) was proposed in Lopez & Nanopou-
los (1996) using the following ansatz

Λ =
ΛPl

(t/tPl)
2 ∝ 1

t2
, (5)

Λ starts at the Planck time as ΛPl ≃ M2
Pl and leads

to the value Λ0 ≈ 10−120M2
Pl for the current epoch.

The decay of Λ(t) during inflation and as Bose con-
densate evaporation was studied in Dymnikova &
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Khlopov (2001, 2000). Other models for Λ(t) have
been suggested in Basilakos et al. (2009; Pan (2018);
Oikonomou et al. (2017); Ahmed & Alamri (2018,
2019a). The following ansatz was first introduced in
Basilakos et al. (2009) where a variety of cosmolog-
ically relevant observations were used to put strict
constraints on Λ(t) models

Λ(H) = λ+ αH + 3βH2, (6)

where H is the Hubble parameter, λ, α and β are
constants. It has been found in Pan (2018); Basi-
lakos et al. (2013); Gómez-Valent & Solà (2015) that
the zero value of λ does not agree with observations,
while λ ̸= 0 behaves like the ΛCDM model at late-
time. Examples of varying Λ models in terms of the
Hubble parameter H are (Pan 2018)

Λ(H) = βH + 3H2 + δHn, n ∈ R− {0, 1} , (7)

Λ(H, Ḣ, Ḧ) = α+ βH + δH2 + µḢ + νḦ. (8)

A generalized holographic dark energy model where
the effective cosmological constant depends on H
and its derivatives was proposed in Nojiri et al.
(2021, 2020, 2022a).

1.3. f(R, T ) Modified Gravity

The action of f(R, T ) modified gravity is given
as (Harko et al. 2011)

S =

∫ (
f(R, T )

16πG
+ Lm

)√
−g d4x, (9)

where Lm is the matter Lagrangian density. f(R, T )
is an arbitrary function of the Ricci scalar R and
the trace T of the energy-momentum tensor Tµν is
defined as

Tµν = gµνLm − 2
∂Lm

∂gµν
. (10)

Varying the action (9) gives

fR(R, T )Rµν − 1

2
f(R, T )gµν

+(gµν3−∇µ∇ν)fR(R, T )

= 8πTµν − fT (R, T )Tµν − fT (R, T )Θµν , (11)

where 3 = ∇i∇i, fR(R, T ) = ∂f(R,T )
∂R , fT (R, T ) =

∂f(R,T )
∂T and∇i denotes the covariant derivative. Θµν

is given by

Θµν = −2Tµν + gµνLm − 2gαβ
∂2Lm

∂gµν∂gαβ
. (12)

The cosmological equations for f(R, T ) = R+2h(T )
with cosmological constant Λ considering a scalar

field ϕ coupled to gravity were given in Aygün et al.
(2018) as

2ä

a
+
ȧ2

a2
=4πϵϕ̇2−8πV (ϕ)+µϵϕ̇2−4µV (ϕ)−Λ, (13)

3ȧ2

a2
=−4πϵϕ̇2−8πV (ϕ)−µϵϕ̇2−4µV (ϕ)−Λ, (14)

where h(T ) = µT and µ is a constant; ϵ = ±1 cor-
responding to normal and phantom scalar fields re-
spectively. In the current work, two cosmological
models in modified f(R, T ) gravity were investigated
using a given scale factor a(t) deduced from the de-
sired cosmic behavior which is the opposite of the
conventional viewpoint. Such ad hoc approach to
the cosmic scale factor and cosmological scalar fields
was widely used by many authors in various theo-
ries (Ellis & Madsen 1991; Chervon et al. 1997; Sen
& Sethi 2002; Maharaj et al. 2017; Silva & Santos
2013; Ahmed & Alamri 2019b; Sazhin & Sazhina
2016; Ahmed et al. 2020; Ahmed 2020; Ahmed &
Kamel 2021; Ahmed & Pradhan 2020; Nojiri et al.
2022b). We will make use of the following hyperbolic
and hybrid scale factors:

a(t) = A sinh
1
n (ηt) , a(t) = a1t

α1eβ1t, (15)

where A, η, n, a1 > 0, α1 ≥ 0 and β1 ≥ 0 are con-
stants. The first scale factor generates a class of ac-
celerating models for n > 1; the models also exhibit a
phase transition from the early decelerating epoch to
the present accelerating era in good agreement with
recent observations. The second hybrid ansatz is a
mixture of power-law and exponential-law cosmolo-
gies, and can be regarded as a generalization of each
of them. The power-law cosmology can be obtained
for β1 = 0, and the exponential-law cosmology can
be obtained for α1 = 0. New cosmologies can be ex-
plored for α1 > 0 and β1 > 0. A generalized form of
the hybrid scale factor has been proposed in Nojiri
et al. (2022b); Odintsov et al. (2021) to unify the
cosmic evolution of the universe from a non-singular
bounce to the viable dark energy

a(t)=

[
1+a0

(
t

t0

)2
] 1

3(1+ω)

exp

[
1

(α− 1)

(
ts−t

t0

)1−α
]
,

(16)
where ω, α and ts are various parameters. Setting
t0 = 1 billion years, this can be re-written as the
product of two scale factors

a(t) =
[
1 + a0t

2
] 1

3(1+ω) × exp

[
1

(α− 1)
(ts − t)

1−α

]
.

(17)
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In the current work, we are going to use the ansatz
(6) for the time varying cosmological constant, which
leads to a very tiny positive value of Λ at the current
epoch as suggested by observations (Perlmutter et al.
1999; Tonry et al. 2003).

2. MODEL 1

Starting with the hyperbolic solution in (15),
which gives the desired behavior of the deceleration
and jerk parameters, we obtain the Hubble, deceler-
ation, and jerk parameters as:

H =
η

n
coth(ηt), q = − äa

ȧ2
=

− cosh2(ηt) + n

cosh2(ηt)
,

j =

...
a

aH3
= 1 +

2n2 − 3n

cosh2(ηt)
. (18)

In order to solve the system of equations (13) and
(14) for the scalar field and the potential, we utilize
the hyperbolic scale factor in (15) along with the
time-dependent anstaz for the cosmological constant
(6). Then, we will have a system of two equations
in two unknowns which we have solved using Maple
software and have obtained

ϕ(t) =
∓ ln(eηt + 1)± ln(eηt − 1)√

−2ϵ(4π + µ)
+ ϕ0, (19)

V(t)=−
(
η2(1+3β)coth2(ηt)+2ηα coth(ηt)+2(η2+4λ)

)
16(2π+µ)

,

(20)

V (ϕ) = −
(
(3β + 1) η2χ2 + 4ηαχ+ 2η2(3β + 5)

)
64(2π + µ)

−
(
16λ+ 4ηαχ−1 + η2χ−2(3β + 1)

)
64(2π + µ)

,

(21)

where χ ≡ e(ϕ0−ϕ)
√

−2ϵ(4π+µ) and we have used
t(ϕ) = 1

η ln(∓ 1+χ
χ−1 ) to get the expression for V (ϕ).

The expression for ϕ(t) shows that ϵ can be −1 pro-
vided that (4π + µ) > 0, and it can be +1 provided
that (4π+µ) < 0. Plotting t(ϕ) leads to same graph
for both signs (Sen 2002). We also obtain the same
expressions for V (ϕ) (Ahmed et al. 2023), energy
density ρ and pressure p for both ϕ solutions. Ac-
tually, Figure 1(g) shows that both solutions for ϕ,
although they have a different start, unite in one so-
lution. We can use ϕ0 = 0 without loss of generality.
Recalling that ρϕ = Ek + V and pϕ = Ek − V we

obtain

pϕ(t) = − η2e2ηt

ϵ(4π + µ)(eηt + 1)2(eηt − 1)2
− V (t),

ρϕ(t) = − η2e2ηt

ϵ(4π + µ)(eηt + 1)2(eηt − 1)2
+ V (t).

(22)

The evolution of the cosmological constant in this
work agrees with observations where it has a very
tiny positive value at the current epoch (Figure 1c).
The expressions for the parameters q, j and the cos-
mological constant in equation (6) are all indepen-
dent of ϵ. The rest of the parameters are all plotted
for ϵ = ±1. For ϵ = +1, which corresponds to a nor-
mal scalar field, the scalar field pressure pϕ changes
sign from positive to negative. We can also see that
V (ϕ), V (t) and ρϕ are all positive where both V (t)
and ρϕ tend to ∞ as t → 0. For ϵ = −1, which
corresponds to a phantom scalar field, the pressure
pϕ > 0 all the time while ρϕ takes negative values
when ωϕ < −1 with a negative scalar potential V . In
the literature, it is known that the vacuum phantom
energy has some unusual physical properties such as
the increasing vacuum energy density, violation of
the DEC ρ+p < 0 and the superluminal sound speed
(González-Dı́az 2004).

According to the WEC, the total energy density
and pressure should follow the inequalities ρ + p =
ρ(1 + ω) ≥ 0 and ρ ≥ 0. For a scalar field ϕ, the
condition ρϕ + pϕ = ρϕ(1 + ωϕ) = 2Ek ≥ 0 al-
lows for ρϕ < 0 if ωϕ < −1 as long as the total
energy density ρ ≥ 0 with the total equation of state
parameter ω > −1. In general, the phantom en-
ergy does not obey the WEC where it has ρph > 0
but ρph + pph = ρph(1 + ωph) = 2Ek < 0 which
means that the phantom field has a negative (non-
canonical) kinetic term (De La Macorra & Germán
2004). Testing the classical energy conditions (Visser
1997b) shows that both the null and the dominant
are satisfied all the time. The highly restrictive SEC
ρ + 3p ≥ 0 is violated as expected where we have a
source of repulsive gravity represented by the neg-
ative pressure, which can accelerate cosmic expan-
sion. Because the strong condition implies that grav-
ity should always be attractive, it is expected to be
violated during any accelerating epoch dominated by
a repulsive gravity effect such as cosmic inflation. In
addition to the ECs, the sound speed causality con-
dition 0 ≤ dp

dρ ≤ 1 is satisfied only for ϵ = +1.
The possible values of the parameters in the fig-

ures are restricted by observations, whereas the the-
oretical model should predict the same behavior ob-
tained by observations. For that reason, we have to
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(a) q (b) j (c) Λ(t)

(d) pϕ (e) ρϕ (f) ωϕ(t)

(g) ϕ(t) (h) V (t) (i) V (ϕ)

Fig. 1. The hyperbolic solution: (a) The deceleration parameter q shows a decelerating-accelerating cosmic transit. (b)
The jerk parameter approaches unity at late-times where the model tends to a flat ΛCDM model. (c) The cosmological
constant reaches a very tiny positive value at the current epoch. (d ), (e) & (f) show pϕ, ρϕ and ωϕ for ϵ = ±1. For
the phantom case, the energy density ρϕ = Ek + V < 0 when ωϕ < −1. (g) The two solutions of ϕ(t) obtained in Sen
(2002). (h) The scalar potential evolution with time. (g) scalar potential V verses ϕ . Here n = 2, η = 1, ϕ0 = 0, A =
λ = β = α = 0.1, µ = 15 for ϵ = −1 and −15 for ϵ = 1. The color figure can be viewed online.
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(a) ϵ = +1 (b) ϵ = −1 (c) dp/dt

Fig. 2. ECs and sound speed for the hyperbolic model. Superluminal sound speed for the phantom field. The color
figure can be viewed online.

fine-tune the parameters’ values to agree with obser-
vational results. We have taken n = 2 as it allows for
a decelerating-accelerating cosmic transit and also
allows the jerk parameter j to approach unity at
late-times in agreement with the standard ΛCDM
model. The constants A, η, and the integration con-
stant ϕ0 are arbitrary and we have chosen the values
0.1, 1 and 0 respectively without loss of generality.
The value of the constant µ has been adjusted such
that the quantity under the quadratic root in (19) is
always positive for both normal and phantom fields.
If we choose µ = 15, then (4π + µ) > 0 for the nor-
mal field where ϵ = +1. For the phantom field with
ϵ = −1, we choose µ = −15 so (4π + µ) < 0 and
then −2ϵ(4π+µ) > 0. As we have indicated in § 1.2,
the zero value of λ does not agree with observations
while λ ̸= 0 behaves like the ΛCDM model at late-
time. Based on this, we have chosen the non-zero
value 0.1 for λ, β and α.

3. MODEL 2

Considering the second hybrid scale factor in
(15), which also leads to the desired behavior of both
q and j (Ahmed 2020), we get the expressions for H,
q and j as:

H = β1 +
α1

t
, q =

α1

(β1t+ α1)2
− 1,

j =
α1

3+(3βt−3)α1
2+

(
3β2t2−3βt+2

)
α1+β3t3

(β t+ α1)
3 .

(23)

For the scalar field and the potential, making use of
(6), we get

ϕ(t) = ±
√

−ϵ(4π + µ)α1 ln t

ϵ(4π + µ)
+ C1, (24)

V (t) =

(
3β2

1(β0 + 1) + α0β1 + λ0

)
t2

−4(µ+ 2π)t2
+

(6α1β1 (β0 + 1) + α0α1) t

−4(µ+ 2π)t2
+

3α2
1 (β0 + 1) + α1

−4(µ+ 2π)t2
, (25)

V (ϕ) =
3
(
β2
1 + α2

1

)
(β0 + 1) + α0β1

−4(µ+ 2π)
+

ξ−1α1 (6β0β1 + α0 + 6β1) + λ0 − α1

−4(µ+ 2π)
, (26)

where ξ = e
ϵ(|C1−ϕ)(4µ+π)√

−ϵα1(4µ+π) = t(ϕ). Plotting t(ϕ) leads
to same graph for both signs. Also, both solutions
for ϕ give the same expressions for ρ and p as

p(t)=
−α1

2ϵ(4π+µ)t2
−V (t), ρ(t)=

−α1

2ϵ(4π+µ)t2
+V (t).

(27)
In comparison to the first hyperbolic model, a similar
behavior has been obtained for different parameters
in the hybrid model. For ϵ = +1, pϕ changes sign
from positive to negative indicating a cosmic tran-
sit. V (ϕ), V (t) and ρϕ are > 0 where both V (t) and
ρϕ → ∞ as t → 0. For ϵ = −1, pϕ is always pos-
itive while ρϕ takes negative values when ωϕ < −1
with a negative scalar potential V . In the current
work, we argue that the WEC is not violated for the
two models considered with an instability at late-
times for the second model, which now can be seen
in Figure 4(c). The WEC, asserting that the total
energy density ρ must be non-negative, is challenged
by the notion that a negative term in the energy den-
sity can coexist if the overall energy density remains
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(a) q (b) j (c) Λ(t)

(d) pϕ (e) ρϕ (f) ωϕ(t)

(g) ϕ(t) (h) V (t) (i) V (ϕ)

Fig. 3. The second model: (a) A decelerating-accelerating cosmic transit. (b) The jerk parameter j = 1 at late-times.
(c) The cosmological constant reaches a very tiny positive value at the current epoch. (d), (e), & (f) show pϕ, ρϕ and
ωϕ for ϵ = ±1. For the phantom case, the energy density ρϕ < 0 when ωϕ < −1. (g) The two solutions of ϕ(t) obtained
in Sen (2002). (h) The scalar potential evolution with time. (g) Scalar potential V verses ϕ . Here α1 = β1 = 0.5,
η = 1, ϕ0 = 0, A = λ = β = α = 0.1, µ = 15 for ϵ = −1 and −15 for ϵ = 1. The color figure can be viewed online.
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(a) ϵ = +1 (b) ϵ = −1 (c) dp/dt

Fig. 4. ECs and sound speed for the hybrid model. Negative sound speed for the phantom field. The color figure can
be viewed online.

positive. Figure 4(c) shows that the sound speed
causality condition is satisfied only within a specific
time interval (for late-times) for a normal scalar field,
while it is always violated for the phantom field. The
phantom field, for both the hyperbolic and hybrid
models, has a positive pressure pϕ > 0 and a nega-
tive scalar potential V (ϕ). Also, its energy density
ρϕ = Ek + V takes negative values when the equa-
tion of state parameter ωϕ < −1. Figure 4(b) shows
that pi+ρi ≥ 0 for both normal and phantom fields.

4. CONCLUSION

We revisited the scalar field cosmology in f(R, T )
gravity through two models. The main points can be
summarized as follows:

• The evolution of the deceleration parameter in-
dicates that a decelerating-accelerating cosmic
transit exists in both models . The jerk pa-
rameter also tends to 1 at late-times, where the
model tends to a flat ΛCDM model.

• The evolution of the varying cosmological con-
stant in both models shows that it tends to a
tiny positive value at the current epoch.

• The scalar field pressure pϕ in both models
shows a sign flipping from positive to negative
for a normal scalar field ϵ = +1 , but it’s always
positive for the phantom field ϵ = −1 .

• In both models, the scalar potential V (ϕ) > 0
for ϵ = +1 and < 0 for ϵ = −1 .

• For the normal field, ρϕ > 0 with no crossing to
the phantom divide line for ωϕ. For the phan-
tom field we have ρϕ < 0 when ωϕ < −1 .

• Classical energy conditions have been tested for
both cases. For the hyperbolic model, the sound
speed causality condition 0 ≤ dp

dρ ≤ 1 is valid
only for ϵ = +1. For the hybrid model, this
condition is satisfied only for a specific interval
of time for the normal scalar field.
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