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ABSTRACT

This study numerically investigates the dynamics of barred spiral galaxies
using 3D Ferrers bar response models. A total of 708 models were analyzed, in-
corporating variations in the axisymmetric potential (nucleus, bulge, disk, halo),
bar length, mass, angular velocity, and disk stellar velocity dispersion. Model eval-
uation employed the Spearman correlation (to assess input-output relationships)
and permutation feature importance in a Random Forest Regressor (to measure
input variable impacts). Orbital configurations of test particles reveal the critical
role of bar dynamics in shaping galaxies’ morphological and kinematic properties.
Key findings emphasize how the bar potential influences major orbital families, af-
fecting barred galaxies’ long-term structure. These results provide deeper insights
into galactic component interactions and a robust framework for understanding bar
properties.

RESUMEN

Este estudio investiga numéricamente la dinámica de galaxias espirales barra-
das mediante modelos de respuesta de barras de Ferrers en 3D. Se analizaron 708
modelos, variando el potencial axisimétrico (núcleo, bulbo, disco, halo), la longitud,
masa y velocidad angular de la barra, y la dispersión estelar del disco. La evaluación
incluyó la correlación de Spearman y el “permutation feature importance” en un
“Random Forest Regressor”. Las configuraciones orbitales revelan el papel cŕıtico de
la barra en la formación de propiedades morfológicas y cinemáticas. Los resultados
destacan cómo su potencial influye en las principales familias orbitales y afecta la
estructura galáctica a largo plazo. Estos hallazgos permiten una comprensión más
profunda de las interacciones galácticas y un marco sólido para estudiar las barras.

Key Words: galaxies: evolution — galaxies: fundamental parameters — galaxies:
kinematics and dynamics — galaxies: statistics — galaxies: structure

1. INTRODUCTION

Barred spiral galaxies are one of the most intrigu-
ing kind of objects in the universe. In these galaxies,
a large bisymmetrical structure grows in the center of
the disk component, modifying drastically the kine-
matics and the dynamics of the barions contained
in the central part of the galaxy. Dark matter is
also influenced by the formation of the bar structure
(Valenzuela & Klypin 2003).

For decades, barred galaxies have been the sub-
ject of several observational, theoretical and numeri-
cal studies. It is now well established that bars signif-
icantly influence their host galaxies in various ways.

1INAOE, México.

As the bar grows over time, it transfers angular mo-
mentum from the inner disk to the outer disk and
the dark matter halo, as discussed by several au-
thors (Lynden-Bell & Kalnajs 1972; Sellwood 1981;
Athanassoula 2003; Athanassoula et al. 2013). The
growing bar will also direct gas to the center of the
galaxy along the narrow lanes that represent loci of
shocks within the bar region (Sorensen et al. 1976;
Athanassoula 1992; Davoust & Contini 2004; Villa-
Vargas et al. 2010; Spinoso et al. 2017; George et al.
2019) triggering the nuclear activity. The influence
of the bar on gas dynamics has been the subject of
extensive research over the years, with a wide range
of studies dedicated to this topic (e.g. van Albada &
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Roberts 1981; Schwarz 1985; Piner et al. 1995; Ma-
ciejewski et al. 2002; Kim & Stone 2012; Pastras et
al. 2022; Romeo et al. 2023; Sormani et al. 2024 and
references therein).

There are also studies proving the kinematics of
bars to be significant. In numerical simulations, the
bar pattern speed (ΩB), or angular velocity of the
bar, is closely linked to the evolution of both the bar
and its host galaxy. As the bar grows and transfers
angular momentum to its surroundings, it generally
slows down, resulting in a decrease in the pattern
speed (Debattista & Sellwood 2000; Athanassoula
2003; Martinez-Valpuesta et al. 2006; Okamoto et al.
2015; Wu et al. 2018). The bar evolution is also influ-
enced by its surrounding environment. Recent stud-
ies have demonstrated that the angular momentum
of the dark matter halo plays a crucial role in shaping
the evolution of both the bar and the disk, impact-
ing the bar pattern speed, instability timescales, and
other dynamics (Saha & Naab 2013; Petersen et al.
2016; Collier et al. 2018; Collier & Madigan 2021).

Observational studies have shown that barred
galaxies exhibit increased star formation in their cen-
tral regions (Matsuda & Nelson 1977; Hawarden et
al. 1986; Garcia-Barreto et al. 1991; Kenney et al.
1992; Alonso-Herrero & Knapen 2001; Hunt et al.
2008; Coelho & Gadotti 2011; Ellison et al. 2011;
Lin et al. 2020; Géron et al. 2024) as well as in the
bar-end regions (Reynaud & Downes 1998; Verley et
al. 2007; Dı́az-Garćıa et al. 2020; Fraser-McKelvie
et al. 2020; Maeda et al. 2020; Géron et al. 2024).
Conversely, star formation is suppressed along the
arms of the bar (Reynaud & Downes 1998; Zurita
et al. 2004; Watanabe et al. 2011; Haywood et al.
2016; Géron et al. 2024). These observational and
numerical studies highlight the significant role that
bars play in the evolution of their host galaxies.

In this paper, we present a new numerical in-
vestigation by studying a large number of three-
dimensional response models. The axisymmetric
part of the models is generated to fit the Galactic cir-
cular rotation curve proposed by Sofue (2020). We
tested a number of parameters such as disk particles
velocity dispersion, and mass, size and angular pat-
tern speed of the imposed bar. In § 2 we present
our models, parameters, initial conditions and orbit
integrations, and in § 3 we discuss the resulting bar
structure observed in the particle distributions. The
resulting values are discussed in § 4 and, finally, in
§ 5 we present a general discussion and our conclu-
sions.

2. SIMULATIONS

2.1. Galactic Models

The selected gravitational potentials are com-
posed by a sum of the axisymmetric and bar com-
ponents. The axisymmetric component itself is a
superposition of several elements: a core and a
bulge, both modeled by a Plummer potential (Plum-
mer 1911), a disk represented by a Miyamoto-Nagai
model (Miyamoto & Nagai 1975), and a halo de-
scribed by a logarithmic potential (Richstone 1980).
The full axisymmetric potential is then

Φax=− GMc1

r2+r2
c1

− GMc2

r2+r2
c2

− GMD√
R2+(a+

√
z2+b2)2

+

v2
H

2
ln(r2 + r2

H), (1)

where r2 = x2 + y2 + z2, while R2 = x2 + y2.
Mc1 and Mc2 are the masses of the bulge and the
core, respectively, and rc1 and rc2 are their radial
scale lengths. MD is the disk mass and a and b
its structural parameters. For the halo, vH is the
asymptotic velocity and rH its radial scale length.
By comparing the circular velocity profiles obtained
from different parameter sets with the observed ve-
locities in the Milky Way within the first 40 kpc, as
reported by Sofue (2020), and by employing the gra-
dient descent method, we identified three parameter
sets with nearly identical χ2 values. This indicates
that the potentials corresponding to these parame-
ters are degenerate. However, these potentials ex-
hibit distinct characteristics from one another. Fig-
ure 1 displays the circular velocities derived from
the three models, which we will henceforth refer to
as Model 1 (left panel), Model 2 (middle panel), and
Model 3 (right panel), based on the influence of their
respective disks. The parameter values correspond-
ing to each model are provided in Table 1.

2.2. Bar Models

For the bar component, we employed the ellip-
soidal Ferrers potential. The mass density associated
with this potential is defined as:

ρB(m) =

{
ρBc

(1−m2)n for m ≤ 1

0 for m > 1,
(2)

where ρBc = 105
32π

MB

aBbBcB
is the central density and

m = (x/aB)2 + (y/bB)2 + (z/cB)2, while aB , bB and
cB are the semi-axes of the ellipsoid. The index n
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Fig. 1. The circular velocity curves corresponding to the axisymmetric potential for three different sets of parameter
values. CC means Central Component (bulge+core). These curves are compared with the circular velocity of the Milky
Way (Sofue 2020) within the first 40 kpc, along with their associated χ2. The color figure can be viewed online.

TABLE 1

PARAMETERS FOR THE AXISYMMETRIC MODELS

Model rc1 (kpc) Mc1 (M�) rc2 (kpc) Mc2 (M�) a (kpc) b (kpc) MD (M�) rH (kpc) vH (km/s)

1 1.46 1.07× 1010 0.278 1.01× 1010 4.66 0.233 6.99× 1010 7.68 212

2 1.46 1.15× 1010 0.275 1.00× 1010 4.72 0.236 6.06× 1010 6.78 213

3 1.45 1.16× 1010 0.274 9.96× 109 4.69 0.235 4.60× 1010 5.73 217

is chosen to be n = 2. The forces generated by this
potential are described in Pfenniger (1984).

To simplify the models, we fixed the ratios be-
tween the semi-axes, setting bB = aB/3 and cB =
aB/6. However, the major semi-axis aB was varied,
considering three distinct values: 6, 4.5, and 3 kpc.
We introduced the bar component as a smooth time-
dependent function by gradually transferring mass
from the disk to the bar in the following way:

MB(t)=


MBf

2

(
1−cos

(
π

Tmax
t

))
for 0 ≤ t ≤ Tmax

MBf
for t > Tmax.

(3)
Here, MBf

represents the final mass of the bar af-
ter its growth is completed at Tmax which is set to
1 Gyr out of a total simulation time of 11.25 Gyr.
Then, our models have a transient phase of 1 Gyr
and are time independent after that. The evolu-
tion of the disk mass is then expressed as MD(t) =
MDi−MB(t). Rather than directly referring toMBf

,

we will use µB =
MBf

MDi
, which denotes the final frac-

tion of mass transferred from the disk to the bar.
The parameter R = RCR

aB
(RCR is the corotation

radius, i.e., the radius at which the stars have the
same angular speed as the pattern speed of the bar)
is used to characterize the bar rotation rate. Bars are
kinematically classified as ‘slow’ if R > 1.4, ‘fast’ if

1.0 < R < 1.4 or ‘ultrafast’ if R < 1.0 (see Debat-
tista & Sellwood (2000); Rautiainen et al. (2008);
Aguerri et al. (2015); Lee et al. (2022)). Concerning
the R found for our barred models, we must note
that each of the models has different axisymmetric
backgrounds (Model 1, 2 or 3), different bar semi

major axis ab, different µB =
MBf

MDi
and different ΩB .

However, after the bar growth phase, with all pa-
rameters set, R depends solely on RCR (determined
by ΩB) and aB .

We are now able to analyze the bar rotation
rate in a two-dimensional parameter space for R
corresponding to each axisymmetric model, along-
side the three selected values for the bar length,
as illustrated in Figure 2 for Model 1. This
methodology allows for the identification of mod-
els featuring either fast or slow bars, with vary-
ing values of µB and ΩB . Therefore, we fo-
cused on models with µB = 0.1, 0.2, 0.3, 0.4, 0.5 and
ΩB = 20, 25, 30, 35, 40, 50, 60 km/s. Furthermore,
only models with 1 ≤ R ≤ 3 were analyzed (indi-
cated by red dots in Figure 2), corresponding to bars
classified as fast and slow by Aguerri et al. (2015).

2.3. Initial Conditions and Orbit Integrations

Given our focus on stars within the disk, we se-
lected the initial positions of the test particles fol-
lowing the axisymmetric distribution of the Kuzmin
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Fig. 2. Parameter space for R with respect to the parameters µB and ΩB for model 1 and three values of bar length.
The red dots are the models we studied in this article. Here we show the values only for Model 1, because there is no
significant change of R when considering the three axisymmetric models (Model 1, Model 2 and Model 3), once they
are time independent (see text). From bottom to top, the straight lines in each plot denote equal R: 3 and 2 (white
solid lines) and 1.4 and 1 (black solid lines). The color figure can be viewed online.

model whose surface density is (Binney & Tremaine
2008):

ΣK(R) =
aMD

2π(R2 + a2)3/2
. (4)

We have chosen to use KT models to create
the initial particle distribution since our Miyamoto-
Nagai models have a scale length ratio (a/b) of 20,
i.e. the disks are very thin. Furthermore, all the par-
ticles are initially in the galactic plane (z(t = 0) =
0). Considering the relationship between surface
density and the number of stars, we observe that at a
given radius, the number of stars can be expressed as
NK(R) = 2πΣK(R). By employing the Monte Carlo
method, we can achieve a well-distributed arrange-
ment of stars within the galactic plane. The maxi-
mum radius selected was given by Rmax = 1.5RCR.
Although all particles are initially positioned within
the galactic plane, the three-dimensional aspect of
the simulations is established through the introduc-
tion of an initial velocity component along the z-axis.

For the velocity initial conditions, we decided to

make v̄θ = vc =
√
R dΦax

dR , while v̄R = v̄z = 0, since

all the stars in an axisymmetric galaxy (as in our
models for t = 0) have near-circular orbits. On the
other hand, the velocity dispersion for each coordi-
nate decreases exponentially with radius as noted by

Lewis & Freeman (1989):

σR(R) =σR(0) exp

(
− R

2hR

)
,

σT (R) =σT (0) exp

(
− R

2hT

)
,

σz(R) =σz(0) exp

(
− R

2hz

)
,

(5)

where σR, σT and σz are the radial, tangential and
vertical velocity dispersions, σR(0), σT (0) σz(0) are
their central values, and hR, hT and hz are the scale
lengths. In their work, Lewis & Freeman (1989) com-
puted the specific values of hR and hT for the Milky
Way, which were found to be 4.37 kpc and 3.36 kpc,
respectively. In the same work, Lewis and Freeman
also assumed that the ratio of radial velocity dis-
persion σR to vertical velocity dispersion σz remains
constant. Consequently, we have chosen hz = hR.

For our research, we have chosen to equate the
three central velocity dispersions (σR(0) = σT (0) =
σz(0) = σD). Additionally, we explore three distinct
values for this new parameter: 100, 80 and 50 km/s.

Hence, in total, we have 5 different galactic pa-
rameters: three different axisymmetric models, five
distinct bar/disk mass ratios, seven angular veloci-
ties, three sets of bar lengths and three disk central
velocity dispersion. This resulted in 945 different
models. However, as mentioned before, only mod-
els with 1 ≤ R ≤ 3 were studied, and then our fi-
nal set of simulations discussed here included 708
simulations. Each simulation comprised a total of
30,000 test particles, yielding a total of 21,240,000
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TABLE 2

MODELS PARAMETER SPACE

Parameter Value

Model 1, 2, 3

σD (km/s) 50, 80, 100

aB (kpc) a 3, 4.5, 6

µB 0.1, 0.2, 0.3, 0.4, 0.5

ΩB (km/s/kpc) 20, 25, 30, 35, 40, 50, 60
aThe axis ratios are bB = aB/3 and cB = aB/6.

calculated orbits. A concise summary of the model
parameter space is presented in Table 2.

The integration was carried out using a fourth-
order Runge-Kutta integrator, employing Fortran
subroutines. To assess stability, we monitored the
Jacobi energy of test particles following bar growth.
Typically, ∆EJ is better than 10−10 for t > Tmax,
since only then the models become time indepen-
dent. The total simulation time was 11.25 Gyr, dur-
ing which 1225 snapshots were captured at equidis-
tant intervals. The bar mass growth ceases at
Tmax = 1 Gyr to ensure 1024 snapshots after the
bar mass evolution. This number of points (210) was
chosen to simplify the Fast Fourier Transform anal-
ysis.

3. ESTIMATING PROPERTIES OF THE BAR

3.1. Detecting the Periodic Orbits x1 and x2

As highlighted by several authors (e.g., Con-
topoulos (1970), Athanassoula et al. (1983), Sell-
wood & Wilkinson (1993), Skokos et al. (2002a) and
Patsis & Athanassoula (2019), periodic orbits play a
crucial role in shaping the structure of barred galax-
ies. These periodic orbits are categorized into four
primary families, namely the x1, x2, x3 and x4 family
orbits, following the classification by Contopoulos &
Papayannopoulos (1980), with the most significant
being the x1 and x2 families. Identifying these peri-
odic orbits is essential for understanding the dynam-
ics of barred galaxies.

To detect these orbits in our simulations, we ap-
plied a Fourier transform on the particle coordinates
projected onto the equatorial plane: x(t), y(t), and
R′(t) = R(t)− R̄, where R̄ is the mean radius of the
particle orbit. This allowed us to extract the dom-
inant frequencies, i.e., those with the highest am-
plitudes, in each coordinate. These frequencies are
denoted as ωx, ωy, and ωR, respectively. Addition-
ally, the corresponding amplitudes were determined
and labeled as Ax, Ay, and AR.

It is crucial to emphasize that this analysis was
conducted after the bar has reached its final mass,
i.e., for t > Tmax, as in our approach the stellar
orbits stabilize and maintain a consistent pattern af-
ter the bar growth. In addition, prior to performing
the Fourier transform, we applied a Hanning window
function to the orbit positions. The purpose of this
window function was to mitigate signal ‘leakage’ in
the Fourier spectra.

We can now identify sticky orbits around the x1

and x2 families of periodic orbits (Contopoulos &
Harsoula 2008; Katsanikas et al. 2013), but for sim-
plicity, we will refer to them as members of the x1

or x2 families. An orbit is classified as part of the x1

family if it satisfies the condition 1.9 ≤ ωR/ωx ≤ 2.1
and Ax/Ay ≥ 2. On the other hand, orbits that meet
the criteria 1.9 ≤ ωR/ωx ≤ 2.1 and Ax/Ay ≤ 0.5 are
associated with either the x2 or x3 family. However,
it is important to note that the x3 family is signif-
icantly less stable than the x2 family (Skokos et al.
2002b), and as such, the presence of sticky-chaotic
orbits around x3 is expected to be minimal, making
them insignificant for classification purposes.

Having identified the orbits belonging to the x1

and x2 families, we can now quantify the number of
orbits in each family, denoted as Nx1

and Nx2
, re-

spectively. Alternatively, we can calculate the pro-
portion of x1 and x2 orbits relative to the total
number of elliptical orbits, i.e., orbits that satisfy
1.9 ≤ ωR/ωx ≤ 2.1. These proportions are denoted
as Px1

and Px2
, respectively.

3.2. Bar Strength

We also performed a Fourier analysis on the stars
positions to calculate the bar strength. For this, we
computed the m = 2 mode Fourier coefficients (a2

and b2) based on the particle positions located within
an annulus of width ∆R at a radius R. Hence, as
highlighted by Chantavat et al. (2024), the ampli-
tude of the bar is:

Ã2
2(R) = a2

2 + b22, (6)

where the bar strength corresponds to the maximum
value Ã2 within RCR, expressed as:

A2 ≡ max
R<Rcor

Ã2(R). (7)

We applied this method to each snapshot, mak-
ing A2 a time-dependent parameter A2(t). This time
evolution of A2(t) was then used to analyze the prop-
erties and dynamics of the orbits in our galaxy mod-
els. In Figure 3, we observe the temporal evolution
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Fig. 3. Evolution of the bar strength A2(t) over time (black line) for two different models. The cyan line corresponds to
the smoothed versions. Additionally, the white/black dot indicates the point of saturation in A2(t), while the horizontal
yellow line represents the secular value associated. Notice the different behavior of A2(t); in one simulation, A2(t)
decreases after the time of saturation, while in the other model, A2(t) remains more or less constant. The color figure
can be viewed online.

of A2(t) for two given simulations. In the same fig-
ure, a smoothed version of this quantity is shown
(the smoothing process employed a Savitzky-Golay
filter with a sixth-order polynomial).

Even with the smoothed curves of A2(t), analyz-
ing each curve individually is impractical since we
have a very large number of galaxy models; there-
fore, we seek for characteristic values that help us to
evaluate the model.

One such value is the saturation point in A2(t).
As observed in Figure 3, the A2(t) curves initially
experience a rapid growth, followed by a decline. No-
tably, several curves exhibit this decline after a spe-
cific time. We designate the values at this inflection
point as Asat and tsat.

Another characteristic value becomes evident to-
ward the end of the simulations for A2(t). At this
point, the curves exhibit minimal changes over time.
This behavior is expected since the structure of ro-
tating Ferrers bars is primarily supported by the sta-
ble portion of the x1 family. In a response model,
any changes in A2 after a couple of bar revolutions
beyond Tmax can therefore be attributed to the influ-
ence of chaotic or escaping orbits. To quantify this
stability in the A2 values, we calculated the average
values over the last 1 Gyr. Specifically, we denote
these values as < Asec >.

An additional observation is the difference be-
tween Asat and < Asec >. Consequently, we desig-
nate this difference as another characteristic value,
denoted by ∆A = Asat− < Asec >.
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4. FEATURE PARAMETERS VS RESULT
VALUES

Having obtained several parameters that char-
acterize the orbital behavior in each galaxy model,
namely: Nx1 , Nx2 , Px1 , Px2 , Asat, tsat, < Asec >,
and ∆A, collectively referred to as the ‘result values’,
we can now proceed to compare these values with the
parameters that describe the galaxy, hereafter called
the ‘feature parameters’. These feature parameters
include: Model, aB , ΩB , µB , and σD. Additionally,
we will incorporate the parameter R previously in-
troduced, along with the quadrupole moment of the
bar as calculated by Garma-Oehmichen et al. (2021)
for n = 2 (equation 8) and the bar angular momen-
tum for n = 2 (equation 9),

QB =
MB

9

(
a2
B − b2B

)
, (8)

LB =
MBΩB

9
(a2
B + b2B). (9)

We employed two methods to compare the re-
sult values and the feature parameters. The first
method involves calculating Spearman correlation
coefficients (Spearman 1904), which measure the
strength and direction of a monotonic relationship
between two ranked variables. This approach allows
us to observe how the feature parameters affect the
result values. The coefficients, along with their cor-
responding p-values (which represent the probabil-
ity of obtaining test results at least as extreme as
the result actually observed (Spearman 1904)) are
presented in Figure 4.

The second method, derived from machine
learning, uses the permutation feature importance
within a Random Forest Regressor (RFR). An RFR
(Breiman 2001) is an ensemble learning method that
combines multiple decision trees to improve predic-
tive performance and reduce overfitting.

Initially applied in this field by Garma-
Oehmichen et al. (2021), this approach evaluates the
contribution of each feature to a given result value
by randomly shuffling the values of a specific fea-
ture and measuring the resulting change in the so
called R2 score. The R2 score quantifies how well
the model explains the variance in the result value,
ranging from 1 (perfect fit) to −∞ (arbitrarily poor
fit) (Pedregosa et al. 2011). The difference between
the R2 score for the original data (R2

baseline) and
the permuted data (R2

permuted) reveals the feature’s
contribution to the model’s performance (Garma-
Oehmichen et al. 2021; Breiman 2001). This method
helps to identify the most influential features, facili-
tating effective feature selection.

We trained the RFRs using 80% of the data, re-
serving the remaining 20% for testing, to find the
optimal number of features for each result value. We
set the number of trees in the model to 1,000 and de-
termined the optimal model by selecting the one with
the highest R2. After identifying the best parame-
ters for each result value, we retrained the models
using the entire data set, following the method pro-
posed by Garma-Oehmichen et al. (2021).

Finally, we estimated the permutation feature
importance after 1,000 permutations for all result
values, with the outcomes illustrated in Figures 5
and 6, along with the feature parameter distribu-
tions. It is crucial to emphasize that the impor-
tance values, represented by R2

baseline − R2
permuted,

are not absolute. Consequently, these values should
not be compared across different result values, but
rather among feature parameters within the same
result value.

As previously noted, we are now able to assess
the relative importance of each feature parameter
for a given result value through the use of feature
importance, as illustrated in Figures 5 and 6. Ad-
ditionally, the Spearman correlation coefficients pre-
sented in Figure 4 provide insights into the nature
and direction of the relationships between feature pa-
rameters and result values. By combining these two
methods, we have uncovered notable findings, which
will be explored in detail in the following section.

5. DISCUSSION AND CONCLUSIONS

From the results presented in Figures 4, 5 and
6 we can derive numerous insights for each result
value (Nx1

, Nx2
, ... < Asec >, and ∆A, see § 4).

However, we will limit our discussion to what we
consider the three most significant findings in the
following subsections:

5.1. Evolution of x1 and x2 Orbits and Double
Barred Galaxies

It is essential to note that the methods intro-
duced in § 4 are directly applied to the response
model, allowing for the tracking of changes intro-
duced whenever the parameter combinations de-
picted in Figure 4 occur. This approach provides
significant practical value in the analysis of fully self-
consistent N-body models, enabling a comprehensive
assessment of the evolution of key orbital structures,
particularly the x1 and x2 families.

In Figure 5, it is evident that the R parameter
is the second most influential feature for determin-
ing Nx1

. Notably, the correlation coefficient between
these two parameters in Figure 4 is strongly negative.
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Nx1 Nx2 Px1 Px2 Asat tsat <Asec > ΔA

Model

aB

ΩB

μB

σD

ℜ

QB

LB

-0.05
 (1.48E-01)

0.07
 (6.17E-02)

-0.02
 (5.42E-01)

0.08
 (3.37E-02)

-0.13
 (4.83E-04)

0.14
 (1.61E-04)

-0.07
 (7.72E-02)

-0.20
 (1.56E-07)

0.64
 (1.99E-83)

0.27
 (2.92E-13)

0.49
 (9.17E-45)

0.16
 (3.40E-05)

0.25
 (2.69E-11)

0.13
 (6.66E-04)

0.35
 (4.81E-22)

-0.04
 (2.33E-01)

-0.01
 (8.69E-01)

-0.54
 (4.10E-54)

0.15
 (3.67E-05)

-0.49
 (1.23E-44)

0.47
 (1.01E-39)

0.32
 (2.19E-18)

0.32
 (1.21E-18)

0.42
 (1.58E-31)

0.33
 (2.86E-19)

-0.10
 (5.46E-03)

0.22
 (6.65E-09)

-0.19
 (4.08E-07)

0.40
 (1.72E-28)

-0.28
 (2.85E-14)

0.28
 (8.61E-14)

0.43
 (1.88E-32)

0.02
 (6.25E-01)

-0.11
 (2.56E-03)

0.24
 (2.11E-10)

-0.04
 (2.46E-01)

-0.35
 (5.33E-22)

0.09
 (1.42E-02)

-0.44
 (5.03E-35)

-0.05
 (1.63E-01)

-0.56
 (9.43E-60)

0.31
 (2.28E-17)

-0.61
 (1.97E-73)

0.36
 (1.16E-23)

-0.66
 (3.45E-90)

-0.48
 (9.46E-43)

-0.62
 (1.36E-76)

-0.36
 (3.82E-23)

0.73
 (2.35E-118)

0.08
 (3.48E-02)

0.55
 (1.45E-57)

-0.07
 (7.91E-02)

0.48
 (3.23E-42)

-0.14
 (2.57E-04)

0.44
 (2.39E-35)

0.32
 (4.84E-18)

0.75
 (9.95E-127)

-0.13
 (3.60E-04)

0.62
 (3.51E-77)

-0.27
 (1.83E-13)

0.69
 (2.15E-101)

-0.02
 (5.17E-01)

0.59
 (7.66E-69)

0.50
 (2.23E-46)

Fig. 4. Spearman correlation coefficients between the result values and the feature parameters for all of our models
(708 models). The associated p-values are provided in parentheses. Bright red colors represent high correlations, while
bright blue ones represent high anti-correlations. The lighter the color, the weaker the correlation of a given feature
parameter with the result value.

Conversely, the most significant feature for Nx2 is
ΩB , which also exhibits a negative correlation.

Previous studies using N-body simulations (e.g.,
Athanassoula 2003; Manos & Machado 2014) have
demonstrated that in barred galaxies, ΩB tends to
decrease over time, consequently R increases. When
combined with our findings, this suggests that barred
galaxies may initially feature a fast bar, character-
ized by a high number of x1 orbits, and gradually lose
some of these orbits as the system evolves. Simulta-
neously, as ΩB decreases, the bar could be acquiring
a larger number of x2 orbits.

Moreover, the presence of a significant concen-
tration of x2 orbits could offer an explanation for
the existence of a secondary bar in certain galax-
ies (Friedli et al. 1996; Maciejewski et al. 2002; Er-
win 2004; Wozniak 2015; Erwin 2024). This indi-
cates that double-barred galaxies may be dynami-
cally more evolved systems.

5.2. Characterizing Bar Strength Evolution Through
∆A

Figure 3 presents two distinct bar strength curves
over time, A2(t). The first curve exhibits rapid
growth until it reaches a saturation point. After sat-
uration, the bar rapidly weakens until it reaches an
equilibrium (as expected for response models) with
< Asec >. In contrast, in the second curve the bar
also weakens beyond the saturation point, although
at a much slower rate. Looking at the other A(t)
curves we can note that there are intermediate cases.

The parameter ∆A plays a crucial role in under-
standing this behavior. A large positive value of ∆A
indicates that Asat is larger than < Asec >, align-
ing with the behavior observed in the first case in
Figure 3. Conversely, a small ∆A corresponds to a
behavior more related to the second case shown in
the same figure.
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ℜ

LB
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Fig. 5. The permutation feature importance calculated using RFRs, trained to predict each specific result value related
to the x1 and x2 families, is depicted. Each feature was permuted 1000 times, generating a distribution of R2

baseline −
R2

permuted scores. The orange line represents the median value of the distribution. The box limits indicate the 25th
and 75th percentiles, while the whiskers extend to the minimum and maximum values. Outliers in the distribution are
shown as open circles. The distribution itself is illustrated on the right side for each feature parameter. The color figure
can be viewed online.

As previously discussed, the x1 family of orbits
forms the backbone of rotating Ferrers bars, remain-
ing stable in the region that supports the bar. In a
response model, the decreasing of ∆A could be at-
tributed to the presence of chaotic or escape orbits
within the system. To verify this last statement, a
study using an index to quantify the chaotic behavior
of the orbits as GALI2 (Skokos et al. 2007; Chaves-
Velasquez et al. 2017; Caritá et al. 2019) could be
performed. However, this is beyond the scope of the
present paper.

The permutation feature importance analysis for
∆A (Figure 6) shows that the primary feature pa-
rameter, with a significantly larger importance com-
pared to other feature parameters, is R. Further-
more, the Spearman correlation between ∆A and R

(as shown in Figure 4) is negative. From this, we
can infer the following:

• Slow Bars: In cases of slow bars, the models
lose x1 particles at a very slow rate after reach-
ing the saturation point (as in the second case
mentioned earlier in Figure 3).

• Fast Bars: Conversely, fast bars experience
fast particle loss beyond the saturation point
(similar to the first case mentioned previously
in Figure 3).

5.3. Impact of Disk-to-Halo Ratio on Bar
Formation

In § 2.1, we constructed three distinct axisym-
metric models. These models exhibit the circular
velocity closest to that of the Milky Way within the
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Fig. 6. As in Figure 5 but for the result values related to the bar strength.

first 40 kpc, as shown in Figure 1. Despite exhibiting
degeneracy in terms of circular velocity, discernible
differences exist among them, primarily in the disk-
to-halo ratio. Model 1 shows a strong disk influence
compared to the halo for R < 8 kpc, whereas Model
3 shows a stronger halo influence compared to the
disk from R > 3 kpc. Model 2 represents an inter-
mediate case.

Since earlier works by Athanassoula & Sellwood
(1986), it is known that galaxies with a stronger
disk influence, as seen in Model 1, tend to form bars
more rapidly than those in which the halo is predom-
inant, like in Model 3 (see also Valencia-Enŕıquez et
al. 2023). However, the permutation importance for
all eight result values shown in Figures 5 and 6 in-
dicate that the variations among the axisymmetric
models have a negligible impact on the result val-
ues. This finding is corroborated by the Spearman
correlation coefficients presented in Figure 4, where
it is evident that most of the coefficients related to
the axisymmetric model are nearly zero. The most
significant correlation is for ∆A with a coefficient

of −0.20, which is insufficient to establish a strong
anticorrelation.

The apparent contradiction presented here arises
from the context of this work, which belongs to rigid
potential models. It is noteworthy that when one
performs a N-body fully self-consistent models, the
structural parameters of the galactic components ex-
hibit temporal evolution, and there is a transfer of
angular momentum among the components. In our
research, we are imposing the same bar model char-
acterized by parameters µB , aB , and ΩB across all
three axisymmetric models.

Consequently, we can conclude that for degener-
ate models, using rigid potentials, the variation in
disk-to-halo does not significantly affect the the for-
mation of x1 and x2 orbits.

Finally, it is crucial to highlight that combining
the Spearman correlation coefficients with the fea-
ture importance derived from a Random Forest Re-
gressor significantly enhances the analysis of the ef-
fects of different input parameters on output results.
The Spearman correlation provides insight into the



©
 C

o
p

y
ri

g
h

t 
2

0
2

5
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

2
5

.6
1

.0
1

.0
7

FERRERS BAR RESPONSE MODELS 109

monotonic relationships between values, while the
feature importance in a Random Forest Regressor
evaluates the overall significance of each parameter.
Using both methods allows for a comprehensive un-
derstanding of the importance and behavior of vari-
ous parameters.

In conclusion, our work provides a detailed in-
vestigation into the dynamics of barred galaxies, of-
fering insights into the interplay between various
galactic parameters and the formation and evolution
of galactic structures. The methodologies employed
and the findings derived from this study contribute
to the broader understanding of galactic dynamics
and serve as a foundation for future research in this
field.

We sincerely thank the referee for his/her com-
ments which have greatly improved and clarified the
presentation of our study.
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