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RESUMEN

Presentamos simulaciones numéricas de magneto-esferas de pulsar en las cuales el giro y los ejes dipolares
magnéticos de la estrella de neutrones estin alineados. Demostramos aqui la existencia de distribuciones de
carga estables que incluyen espacios vacios. También demostramos que la distribucién de carga usada en el
modelo de Goldreich-Julian de pulsar estindar es inherentemente inestable. Este se colapsa en una configuracién
estable que es muy similar a las otras ilustradas en este articulo.

ABSTRACT

We present numerical simulations of pulsar magnetospheres in which the spin and magnetic dipole axes of the
neutron star are aligned. We thereby demonstrate the existence of stable charge distributions that include
vacuum gaps. We also demonstrate that the charge distribution used in the “standard” Goldreich-Julian pulsar
model is inherently unstable. It collapses to a stable configuration that is very similar to the others illustrated
in this paper.
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1. INTRODUCTION

For many years, the “standard” model for pulsar magnetospheres has been the one introduced by Goldreich
& Julian (1969: GJ). The arguments leading to their model are simple and quite elegant in their original form.
The neutron star is assumed to be an excellent conductor surrounded everywhere by a charge-separated plasma.
Rotation induces potential differences on the surface of the neutron star, and the high parallel conductivity of
the plasma leads to equipotential field lines.

Dipole magnetic field lines in spherical coordinates are given by
sin §/r = constant , (1)
where 6 is the colatitude. For an aligned rotator, the potential V induced by the rotation rate w is
V = Awsin®0/r , (2)

where r is measured in units of the stellar radius Rys and A = BOR%IS /2c. By is the polar magnetic field
strength, and ¢ is the velocity of light. From now on, we will set Rys =1 and A = 1.
Close to the neutron star, the GJ plasma corotates rigidly with the star and the space charge density is
given by
pcs = w(l — 3cos® §)/2nr3 . (3)
However, this cannot hold beyond the light cylinder (where wrsin = c), and the GJ model assumes that the
plasma then streams away to infinity. This would mean that an aligned rotator could be an active system.

However, several studies have shown that this picture cannot be made self-consistent: see Michel (1982) for a
review.

One of the implicit assumptions of the GJ model, as shown in eq. (3), is that charge fills the entire region
surrounding the neutron star. This has been challenged, and the existence of vacuum gaps has been proposed
by numerous authors (Holloway 1973; Ruderman & Sutherland 1975; Michel 1979; Krause-Polstorff & Michel
1985a,b). The question then is whether stable magnetospheric solutions including vacuum gaps can be found,
i.e., that satisfy E - B = 0 everywhere on the stellar surface and in the magnetosphere.
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2. MAGNETOSPHERIC MODEL

Stable magnetospheric solutions with vacuum gaps have indeed been found (Krause-Polstorff & Michel
1985a,b: KPM). Associated with the concept of vacuum gaps is the concept of “force-free surfaces”. Plasma
will tend to congregate behind such surfaces, allowing vacuum gaps to form between them. One such surface
forms a pair of linked spheres extending from the center of the star above and below the poles. This surface
shapes the formation of polar domes of negatively charged plasma. Positively charged plasma accumulates in
the equatorial region of the magnetosphere. The two charged regions are separated by a vacuum gap, and are
confined well inside the light cylinder, so no plasma leaves the system.

To find particular magnetospheric solutions, we use a numerical simulation based on that of KPM. The
central charge of the neutron star is fixed by the rotation rate, and for the work shown here is set to a value
of +10. All the units are made dimensionless, and the solutions are equally valid for a wide range of physical
situations. Because of the symmetry of the aligned axes, we can use infinitesimal rings as the quanta of charge
in the magnetosphere. The axisymmetric charge distribution can then be easily displayed in a two-dimensional
cross-section. The total charge of the system, star and plasma, can be altered by the addition of a uniform
density surface charge.

The KPM code has been significantly re-written and improved, and can now run with orders of magnitude
more particles than before. However, the qualitative results found by KPM have remained robust. The code
follows an iterative procedure, starting with a given charge distribution in the magnetosphere. The main steps
are:

1. If there are areas of the surface of the star where E - B # 0, rings of charge are separated and launched
into the magnetosphere.

2. The newly launched rings are considered to be “frozen” to their field lines, and are moved to equilibrium
positions based on the electric fields in the magnetosphere.

3. All the rings in the magnetosphere are moved to new equilibriumn positions, because of the perturbations
from the new rings.

The code then returns to step 1. A solution is reached when all the rings are sufficiently close to equilibrium
positions at the end of step 3. ‘

3. RESULTS
3.1. Stable Magnetosphere Solutions

Figure 1 shows sample simulation results when the code is started with a vacuum in the magnetosphere.
In all three cases, the charge of each ring is £0.02. The only difference between the three cases is the amount
of surface charge Qs added.

Self-consistent and stable charge configurations containing vacuum gaps are found in each case. The
configurations are all characterized by negatively charged polar domes and positively charged equatorial belts.
It should be noted that the V-shaped region above the pole is not a vacuum gap: it slowly fills in as the charge
quantization is reduced.

Figure 1(a) shows the case when no surface charge is added. Adding a large positive surface charge greatly
shrinks the negatively charged polar dome, as shown in Figure 1(d). Adding a large negative surface charge
greatly expands the polar dome, as shown in Figure 1(c). The shape of the positively charged equatorial
belt is little changed in the three runs, though the fraction of all the rings that are positively charged varies
appropriately.

The general dome, belt, and vacuum gap geometry always seem to appear, even if we do not start the
simulation with a vacuum in the magnetosphere, or if we choose different methods for launching the particles
from the surface of the star. For a given surface charge, there is no unique solution, because different stable
solutions can be reached depending on the geometry of the plasma in the magnetosphere at the start of the run.
However, we have not found any other stable class of configuration.
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Fig. 1. Sample simulation results. For all three cases, the central charge of the neutron star is +10, and the
rings have charges of £0.02. (a) Surface charge Qs = 0. (b) Qs = +12. (¢) Qs = —8. Polar dome particles are
negatively charged. Equatorial particles are positively charged.
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Fig. 2. Instability of the GJ solution. (a) A GJ charge density used as the starting point of our simulation.
Dashed line shows the boundary between the negatively and positively charged regions. (b) The final stable
solution. The central charge of the neutron star is +10, the rings have charges of +0.06, and the surface charge
is zero. Polar dome particles are negatively charged. Equatorial particles are positively charged.

3.2. Goldreich-Julian Instability

Figure 2 illustrates what happens if we start our simulation with a GJ charge density in the magnetosphere.
Note that the real GJ plasma fills the magnetosphere out to the light cylinder: to reduce the computational
burden, we have only started with plasma out to 9Rys, though we have found from using a larger charge
quantization that the results do not depend on this radius.

It is clear that the GJ configuration is unstable. It collapses to form a dome, belt and vacuum gap
configuration similar to those shown in Figure 1. These results illustrate the point we made in section 3.1: the
general dome, belt, and vacuum gap geometry always seem to appear, no matter how we start the simulation
running.

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1998RMxAC...7..211T

Lt
=

Pt

RWKAC .- 72"

[se]}
(=]

]|
L

© Universidad Nacional Auténoma de México ¢ Provided by the NASA Astrophysics Data System

214 THACKER, MICHEL, & SMITH

4. ONGOING WORK

Since stable magnetospheric solutions have been found, and no plasma leaves the system, the aligned rotator
is a “dead” pulsar.

It might be thought that including electron-positron pair creation in the vacuum gap might greatly alter
the situation. However, our studies so far show that the only effect is to add plasma to the charge-separated
regions, with the vacuum gap shrinking until the electric field becomes low enough that pair production turns
off.

To create a real pulsar, it will be necessary to break the alignment of the spin and magnetic field axes. To
study this, we are currently developing a code that uses discrete particles, rather than rings of charge.

This work was supported by NASA grant NAG 5-3070 at Rice University.
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