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RESUMEN

El campo de la astrof́ısica computacional (CA) ha tenido muchos avances
recientes. La aparición de esquemas de orden mayor de Godunov para varios de
los sistemas computacionales de interés astrof́ısico representa un gran avance en el
campo. Estos esquemas permiten mayor exactitud y menor disipación. El hecho
de que estos esquemas estén fundamentados en las caracteŕısticas f́ısicas asociadas
a las ecuaciones hiperbólicas, les permiten una mayor fidelidad de los fenómenos
f́ısicos comparado con las formulaciones computacionales anteriores. Estos métodos
han sido extendidos a MHD clásica y relativista, hidrodinámica relativista y a MHD
e hidrodinámica radiativa. Una ventaja adicional es que los esquemas se pueden
paralelizar y aceptan estrategias auto-adaptivas. Varios de los métodos han sido
desarrollados por el autor y sus colaboradores, en un esfuerzo por aumentar la
calidad de la CA y aqúı se describe el trabajo. Los métodos se han implementado
en una plataforma RIEMANN para CA altamente paralelizable y auto-adaptiva.

ABSTRACT

The field of computational astrophysics (CA) has seen many recent advances.
The emergence of higher order Godunov schemes for many of the systems of inter-
est in CA represents a development of great importance in this field. Such schemes
offer high order accuracy and low dissipation. The fact that such schemes derive
their underpinnings from physical features in the hyperbolic equations results in
their having greater physical fidelity and reliability compared to older formula-
tions. These methods have been shown to be extensible to non-relativistic MHD,
relativistic hydrodynamics, relativistic MHD, radiation hydrodynamics and radi-
ation MHD. A further advantage is that such schemes also take well to parallel,
self-adaptive strategies for their solution. Many of these methods have been de-
veloped by this author and his co-workers in an effort to raise the quality of CA
simulations and we describe that work here. The methods have been implemented
in the RIEMANN framework for highly parallel, self-adaptive CA.

Key Words: HYDRODYNAMICS — METHODS: NUMERICAL —
MHD

1. INTRODUCTION

It is interesting to view this conference as a microcosmic indicator of trends in astronomy, with numerous
advances having been reported in theory and observation. Even more interesting is the growing trend amongst
astronomers to use techniques drawn from computational astrophysics (CA) in their work. However, a quiet
revolution has been taking place in CA. In the eighties the ability to calculate fluid flow with fidelity using
higher order Godunov schemes caused an interesting revolution in the aerospace community. Suddenly, every
aerospace engineer could reliably calculate just about every flow problem s/he could imagine. The new higher
order Godunov codes easily displaced the earlier artificial viscosity-based codes in aerospace. In the nineties, a
few computational astrophysicists developed higher order Godunov schemes for a range of hyperbolic systems
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that include MHD, relativistic hydro, relativistic MHD, radiation hydrodynamics and radiation MHD. Thus
the same paradigm shift that caused a revolution in aerospace now becomes possible in CA. It is hoped that
astronomers will see the virtue of replacing the artificial viscosity-based codes that are currently in use in CA.

Matching this advance in technique is a change in technology. The emergence of parallel computers and
their easy availability means that problems in CA can be carried out with unprecedented resolution, thus
enhancing their reliability. The higher order Godunov schemes offer a further advantage in that they are
extremely cache-friendly for the emerging architectures and parallelize extremely well.

Any observation of astrophysical phenomena shows that they take place over a range of length scales. This
necessitates simulating them on multiple scales. Fortunately, adaptive mesh refinement (AMR) techniques
have been developed which permit such a multiscale viewpoint. The ability to do AMR simulations on par-
allel machines has been something of a challenge until recently. The author’s RIEMANN framework for CA
provides a general approach for solving parallel self-adaptive problems in hydrodynamics, MHD, relativistic
hydrodynamics, relativistic MHD, radiation hydro and MHD. These systems are solved using some of the most
sophisticated higher order Godunov techniques to date, developed by the author and collaborators.

Section 2 gives a brief introduction to higher order Godunov schemes. In § 3 we catalogue the techniques
that have been developed for various hyperbolic systems. In § 4 we discuss the RIEMANN framework for
parallel, self-adaptive CA. In § 5 we draw some conclusions.

2. INTRODUCTION TO HIGHER ORDER GODUNOV SCHEMES

In this section, we give the briefest possible introduction to higher order Godunov schemes for solving
systems of hyperbolic equations. Two reviews that are geared towards CA are those of LeVeque (1997),
focusing on theory, and Balsara (1997), focusing on practice. Since then, many more systems of equations of
interest to CA have come within the fold of higher order Godunov schemes. Many of these systems can be
written in the form

∂tU + ∂xF (U) + ∂yG(U) + ∂zH(U) = 0 , (1)

where U is a vector of n conserved variables and F , G and H are fluxes in the x, y and z-directions. Such equa-
tions often admit wave-like solutions in the absence of dissipative processes. Thus, one can conceptualize the
time-evolution of such systems as the evolution and interaction of waves. Usually, it is simpler to demonstrate
the wave-like structure of such equations when they are written out in terms of an alternate set of variables
that are referred to as the primitive variables. We denote the primitive variables by V . Thus the x-directional
variation of the above equations in terms of the primitive variables can be written as:

∂tV + A(V )∂xV = 0 , (2)

where A(V ) is an n× n matrix. The system is hyperbolic if A(V ) has n real eigenvalues corresponding to the
propagation of n wave-like structures. Corresponding to the eigenvalues, there are right eigenvectors which
give us information about the structure of the waves. For each right eigenvector there is a corresponding left
eigenvector which, if properly orthonormalized, can be used to give us the strength of an arbitrary fluctuation
in terms of the corresponding wave field. When these fluctuations are small, they evolve linearly. However,
astrophysical flows often produce large fluctuations in the flow variables. In such situations, the evolution can
be strongly non-linear and has to be developed in terms of the Riemann problem, which gives us the structure
of the waves that emerge from two discontinuous slabs of fluid that are initially put side by side.

Godunov (1959) found a way of solving systems of hyperbolic equations that respects and incorporates this
wave-like structure. His idea was to discretize the fluid flow into slabs of fluid. One slab of fluid was ascribed
to each zone in the computational problem. The discontinuities between zones were allowed to evolve using the
Riemann problem. The flow variables that emerged in the Riemann problem were used to compute the fluxes
in equation 1. The fluxes were then used to obtain the time-update. The very attractive aspect of the method
was that since it was built on physical building blocks (the Riemann problem), it always yielded the correct
physical answer. However, the original Godunov scheme suffered from the fact that it was very dissipative
because of its low order of accuracy.

Van Leer (1979) overcame the limitations of Godunov’s scheme by giving the slabs a linear variation of the
flow variables within each zone, thus improving accuracy. The extent of this variation was moderated so as to
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74 BALSARA

ensure numerical stability. The resulting higher order Godunov schemes were further improved by a number
of authors. Roe (1981) designed linearized Riemann solvers which were very computationally efficient. Harten
(1982) showed that interpolating in the characteristic variables improves the solution quality and he formulated
total variation diminishing (TVD) schemes which bound the variation in these variables. Harten et al. (1987)
formulated essentially non-oscillatory (ENO) schemes with higher order accuracy than TVD schemes. Shu &
Osher (1988, 1989) showed that such ENO schemes could be made more efficient. Recent improvements in the
order of accuracy have come from Liu, Osher, & Chan (1994), Jiang & Shu (1996), and Balsara & Shu (2000).

3. HYPERBOLIC SYSTEMS OF INTEREST TO COMPUTATIONAL ASTROPHYSICS

MHD: Jeffery & Taniuti (1964) give a very good analysis of the structure of MHD waves and shocks. An
analysis of the eigenstructure of MHD with an eye to computation was done by Zachary & Colella (1992), and
done with higher precision by Roe & Balsara (1996). They showed that an orthonormal and complete set of
left and right eigenvectors always exists. Thus a loss of strict hyperbolicity does not cause a computational
breakdown. They also showed that the flux computation based on the linearization of the hyperbolic system
remains valid even at the triple-umbilic point. Falle & Komissarov (1997) and Myong (1996) have also worked
on the issue of compound waves, first found to be present in higher order Godunov codes by Brio & Wu (1988).
The upshot is that the codes are picking up the solution that they should.

Dai & Woodward (1994a) developed a non-linear Riemann solver for numerical MHD. Such Riemann solvers
are extremely floating point intensive. The current focus is on the development of linearized Riemann solvers
(Balsara 1998a, 1999e), which give high-quality results at a much lower operation count.

TVD schemes for MHD have been designed by Zachary, Malagoli, & Colella (1994), Ryu & Jones (1995)
(who also give an excellent set of MHD test problems), and Balsara (1998b). Test problems allow the differences
in quality between MHD codes to be made apparent. Dai & Woodward (1994b) have designed PPM (piecewise
parabolic method) schemes for MHD. The advances in ENO schemes have also led to the design of very high
order schemes for MHD (Jiang & Wu 1999; Balsara & Shu 2000).

Magnetic fields satisfy the constraint that they remain divergence-free over the course of their evolution. In
the past, some authors, (e.g., see Powell 1994), have changed the structure of the equations of MHD so that
the magnetic fields can develop a non-zero divergence. More recently, divergence-free evolution of the magnetic
fields has been preferred (Balsara & Spicer 1999; Dai & Woodward 1998; Ryu et al. 1998). Balsara & Spicer
(1999) showed that the fluxes can be multidimensionally upwinded in response to flow features.

Relativistic Hydrodynamics: Balsara (1994) and Mart́ı, Müller, & Ibáñez (1994) designed solution strate-
gies for the Riemann problem for relativistic hydrodynamics. Eulderink & Mellema (1994) and Falle & Komis-
sarov (1996) have developed linearized Riemann solvers for this problem. The introduction of relativistic effects
does not change the wave structure compared to that for non-relativistic hydrodynamics. The same TVD and
ENO interpolation strategies that work well for non-relativistic hydrodynamics and MHD also work well for
relativistic hydrodynamics. There is a slight difference in the equations of relativistic hydrodynamics which
stems from the fact that the primitive variables cannot be easily derived from the conserved variables: they
require the solution of a transcendental equation. This is one of the finer points which makes relativistic
hydrodynamics rather computationally costly in comparison to non-relativistic hydrodynamics.

Relativistic MHD: The relativistic analogue of the equations of non-relativistic MHD also exist (see Anlies
1989 and Lichnerowicz 1967 for good introductions to relativistic MHD). A thorough analysis of the eigenstruc-
ture of relativistic MHD (Anlies & Pennisi 1987) shows that the degeneracies follow those of the non-relativistic
case. TVD schemes and linearized Riemann solvers can be designed for relativistic MHD in much the same
way that they can be designed for non-relativistic MHD (Balsara 2000). Again, the primitive variables cannot
be easily derived from the conserved variables. In the case of relativistic MHD this necessitates solving not
just one but rather a whole set of non-linear transcendental equations.

Radiation Hydrodynamics: The analysis of the equations of radiation hydrodynamics (see, e.g., Mihalas
& Mihalas 1984), was shown by Balsara (1999a) to admit the usual sound waves, shear waves and entropy
wave from hydrodynamics, but with the interesting twist that these waves carry important additional parts
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(a) (b)

Fig. 1. (a) Density and (b) grid levels from a self-adaptive MHD shocked cloud problem.

associated with the radiation energy and the radiation fluxes. This shows that the equations of radiation
hydrodynamics are more intimately coupled than had previously been thought possible. Furthermore, the
system of radiation hydrodynamics also admits a pair of waves, which propagate the radiation energy density,
that can travel at luminal speeds consistent with the fact that radiation energy can propagate at the speed of
light, and another pair that propagates the radiative flux. As a result, the radiation energy density waves do not
produce material fluctuations. The linearized Riemann solver for radiation hydrodynamics has been designed
by Balsara (1999b), and Balsara (1999c) analyzes the design of implicit schemes for radiation hydrodynamics.

Radiation MHD: The equations of radiation MHD also form a hyperbolic system (Balsara 1999d), and
analogues of the fast, Alfvén, slow, and entropy waves in MHD exist even for this system. Again, these waves
couple strongly to the radiation energy and radiation fluxes and, as in the above case, the system admits a pair
of waves that propagate the radiation energy density and another pair that propagates the radiative flux. The
linearized Riemann solver for radiation hydrodynamics has also been designed by Balsara (1999e).

4. THE RIEMANN FRAMEWORK

The AMR techniques were originally developed by Brandt (1977), Berger & Oliger (1984) and Berger &
Colella (1989). Ever since the advent of parallel supercomputers, it has been a topic of great interest to be
able to do parallel AMR. Balsara & Norton (2000) showed that parallel AMR computations can be carried
out efficiently in a standard-conforming way. They also showed that frameworked approaches for parallel, self-
adaptive computational astrophysics, as exemplified by the RIEMANN framework, could be built. In future
work, it will be shown that a divergence-free extension of the strategy of Balsara & Spicer (1999) can be made
so that one can compute magnetic fields on AMR hierarchies in a divergence-free fashion.

As an example, Figure 1a (from Balsara & Norton 2000) shows the density from a 3D magnetized shock-
cloud interaction problem. Figure 1b shows a map of the levels in the AMR hierarchy used for solving this
problem. Here mid gray denotes the base grid level, light gray the first level of refinement and dark gray the
second level of refinement. Balsara & Norton (2000) gives several further details, including a scalability study
for the AMR-MHD problem.

5. CONCLUSIONS

We have shown that significant recent advances have been made in computational astrophysics owing to
the development of higher order Godunov schemes for many of the interesting hyperbolic systems that are of
relevance in this field. We have attempted to show that there are important similarities in the structure of
these equations and that the similarities should be used to advantage in developing solution techniques. The
emergence of the parallel self-adaptive RIEMANN framework for computational astrophysics makes it possible



A
st

ro
p

hy
si

c
a

l P
la

sm
a

s:
 C

o
d

e
s,

 M
o

d
e

ls
, a

nd
 O

b
se

rv
a

tio
ns

 (
M

e
xi

c
o

 C
ity

, 2
5-

29
 O

c
to

b
e

r 1
99

9)
Ed

ito
rs

: J
a

ne
 A

rth
ur

, N
a

nc
y 

Br
ic

kh
o

us
e

, &
 J

o
sé

 F
ra

nc
o

76 BALSARA

to solve large classes of astrophysical problems with extremely high accuracy and resolution.
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