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THE EQUILIBRIUM STRUCTURE OF COSMOLOGICAL HALOS: FROM

DWARF GALAXIES TO X–RAY CLUSTERS

Ilian T. Iliev and Paul R. Shapiro

University of Texas at Austin

RESUMEN

Se describe un nuevo modelo para la estructura de equilibrio post–colapso
de objetos virializados que se condensan del fondo cosmológico del universo y se
compara con observaciones y simulaciones de halos cosmológicos. El modelo se
basa en la suposición que los halos virializados son isotérmicos, lo que lleva a la
predicción de una esfera isotérmica única no–singular para la estructura de equilibiro
con densidad en el núcleo proporcional a la densidad media del fondo en la época
del colapso. Las predicciones de estas esferas isotérmicas están de acuerdo con las
observaciones de la estructura interna de halos dominados por materia oscura desde
las galaxias enanas hasta los cúmulos emisores de rayos X. Nuestro modelo también
reproduce con buena exactitud muchas de las propiedades promedio de halos en
simulaciones de MOF, lo que sugiere que es una aproximacion anaĺıtica útil para
halos con condiciones iniciales realistas. En tanto que las simulaciones de N–cuerpos
encuentran perfiles con una cúspide central, nuestro modelo no–singular se ajusta
a los halos simulados fuera del pozo de la región más interior. Este modelo puede
tambien ser de interés como una descripción de halos en modelos MOF no estándar
como los de materia oscura auto–interactuante, los cuales han sido propuestos para
eliminar la discrepancia entre los halos con cúspide de las simulaciones MOF y los
halos observados con núcleos de densidad uniforme

ABSTRACT

A new model for the postcollapse equilibrium structure of virialized objects
which condense out of the cosmological background universe is described and com-
pared with observations and simulations of cosmological halos. The model is based
upon the assumption that virialized halos are isothermal, which leads to a predic-
tion of a unique nonsingular isothermal sphere for the equilibrium structure, with
a core density which is proportional to the mean background density at the epoch
of collapse. These predicted nonsingular isothermal spheres are in good agreement
with observations of the internal structure of dark–matter–dominated halos from
dwarf galaxies to X–ray clusters. Our model also reproduces many of the average
properties of halos in CDM simulations to good accuracy, suggesting that it is a
useful analytical approximation for halos which form from realistic initial condi-
tions. While N–body simulations find profiles with a central cusp, our nonsingular
model matches the simulated halos outside the innermost region well. This model
may also be of interest as a description of halos in nonstandard CDM models like
self–interacting dark matter, which have been proposed to eliminate the discrep-
ancy between the cuspy halos of standard CDM simulations and observed halos
with uniform–density cores.

Key Words: COSMOLOGY: THEORY — DARK MATTER — GALAX-
IES: CLUSTERS: GENERAL — GALAXIES: FORMATION
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1. INTRODUCTION

The question of what equilibrium structure results when a density perturbation collapses out of the expand-
ing background universe and virializes is central to the theory of galaxy formation. The nonlinear outcome
of the growth of Gaussian–random–noise cosmological density fluctuations due to gravitational instability in
a hierarchical clustering model like CDM is not amenable to direct analytical solution, however. Instead, nu-
merical simulations are required. As a guide to understanding these simulations, as a check on their accuracy,
and as a means of extrapolating from simulation results of limited dynamic range, analytical approximations
are nevertheless an essential tool. One such tool of great utility has been the solution of the spherical top–hat
perturbation problem (cf. Gunn & Gott 1972, Padmanabhan 1993). As used in the Press–Schechter (“PS”)
approximation (Press & Schechter 1974) and its various refinements, the top–hat model serves to predict well
the number density of virialized halos of different mass which form at different epochs in N–body simulations.
An analytical model for the internal structure (e.g. mass profile, temperature, velocity dispersion, radius) of
these virialized halos would be a further tool of great value for the semi–analytical modelling of galaxy and
cluster formation, therefore. Here we shall summarize our attempt along these lines.

Earlier work adopted crude approximations which used the virial theorem to match a collapsing top–hat
perturbation either to a uniform sphere or to a singular isothermal sphere, with the same total energy as
the top–hat. Our first motivation, therefore, is simply to improve upon this earlier treatment by finding a
more realistic outcome for the top–hat problem. As a starting point, we shall adopt the assumption that
the final equilibrium is spherical, isotropic, and isothermal, a reasonable first approximation to the N–body
and gasdynamic simulation results of the CDM model. As we shall see, the postcollapse analytical solution
derived from this assumption quantitatively reproduces many of the detailed properties of the halos found in
those simulations, so we are encouraged to believe that our approximation is well justified. Our model is in
disagreement, however, with the N–body simulation result that, in their very centers, dark–matter–dominated
halos have cuspy profiles (e.g. Navarro, Frenk, & White 1997; “NFW”). By contrast, our model predicts a small,
but uniform density core, as required to explain the observed dwarf galaxy rotation curves and cluster mass
profiles inferred from gravitational lensing. This discrepancy between the cuspy profiles of the N–body results
and the observed dark–matter–dominated halos has led recently to a reexamination of the cold, collisionless
nature of CDM, itself, and the suggestion that a variation of the microphysical properties of the dark matter
might make it more “collisional”, enabling it to relax dynamically inside these halos so as to eliminate the
central cusp (e.g. Spergel & Steinhardt 2000). While the details of this suggestion are still uncertain, our
model serves to predict its consequences, to the extent that we are able to ignore the details of the relaxation
process inside the halo and approximate the final equilibrium as isothermal. In what follows, we shall describe
our model and compare its predictions both with CDM simulation results and with observations of dwarf galaxy
rotation curves and galaxy clusters.

2. THE TRUNCATED ISOTHERMAL SPHERE MODEL

Our model, as described in Shapiro, Iliev, & Raga (1999) for an Einstein–de Sitter universe and generalized
to a low–density universe, either matter–dominated or a flat one with a positive cosmological constant, in Iliev
& Shapiro (2001, in preparation), is as follows: An initial top–hat density perturbation collapses and virializes,
which leads to a truncated nonsingular isothermal sphere in hydrostatic equilibrium (TIS), a solution of the
Lane–Emden equation (appropriately modified in the Λ 6= 0 case). Although the mass and total energy of the
top–hat are conserved through collapse and virialization, and the postcollapse temperature is set by the virial
theorem (including the effect of a finite boundary pressure), the solution is not uniquely determined by these
requirements alone. In order to find a unique solution, some additional information is required. We adopt the
anzatz that the solution selected by nature will be the “minimum energy solution” such that the boundary
pressure is that for which the conserved top–hat energy is the minimum possible for an isothermal sphere of
fixed mass within a finite truncation radius. As a check, we appeal to the details of the exact, self–similar,
spherical, cosmological infall solution of Bertschinger (1985). In this solution, an initial overdensity causes
a continuous sequence of spherical shells of cold matter, both pressure–free dark matter and baryonic fluid,
centered on the overdensity, to slow their expansion, turn–around and recollapse. The baryonic infall is halted
by a strong accretion shock while density caustics form in the collisionless dark matter, instead, due to shell
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140 ILIEV & SHAPIRO

Table 1

SUS SIS TIS (Ω = 1)

η = rt

rm

..... 0.5 0.417 0.554

kBTvir
(

2
5

GMm
rvir

) ... 1 3 2.16

ρ0/ρt........... 1 ∞ 514

〈ρ〉/ρt........... 1 3 3.73

rt/r0.............. – NA – ∞ 29.4

〈ρ〉

ρcrit(tcoll)
..... 18π2 18π2

(

6

5

)3

130.5

Fig. 1. Density profile of truncated isothermal sphere which forms from the virialization of a top–hat density
perturbation in a matter–dominated universe. Radius r is in units of rm - the top–hat radius at maximum
expansion, while density ρ is in terms of the density ρSUS of the standard uniform sphere approximation for
the virialized, post–collapse top–hat. Bottom panel shows logarithmic slope of density profile.

crossing. The postcollapse virialized object we wish to model is then identified with that particular shock–
and caustic–bounded sphere in this infall solution for which the mass and total energy are the same as those
of our top–hat before collapse and the trajectory of its outermost mass shell was identical to that of the outer
boundary of our collapsing top–hat at all times until it encountered the shock. This spherical region of post-
shock gas and shell–crossing dark matter in the infall solution is very close to hydrostatic and isothermal and
has virtually the same radius as that of the minimum energy solution for the TIS. This confirms our “minimum
energy” anzatz and explains the dynamical origin of the boundary pressure implied by that solution as that
which results from thermalizing the kinetic energy of infall.

With this “minimum energy” anzatz, we find that a top–hat perturbation collapse leads to a unique,
nonsingular TIS, which yields a universal, self–similar density profile for the postcollapse equilibrium of
cosmic structure. Our solution has a unique length scale and amplitude set by the top–hat mass and collapse
epoch, with a density proportional to the background density at that epoch. The density profiles for gas and
dark matter are assumed to be the same (no bias). The final virialized halo has a flat density core.

Case I: matter–dominated cases, both flat and low density (see Figure 1). The core size is r0 = 0.034 ×
radius rt, where rt is the size of the halo (i.e. truncation radius). The central density is ρ0 = 514 × surface
density ρt. The 1D velocity dispersion σV of the dark matter and the gas temperature T are then given by
σ2

V = kBT/(µmp) = 4πGρ0r
2
0 . [Note: this r0 ≡ r0,King/3, where r0,King is the core radius defined as the “King

radius” by Binney & Tremaine (1987, eq. [4-124b])]. Compared to the standard uniform sphere (SUS) and
singular isothermal sphere (SIS) approximations (see Table 1), the temperature is T = 2.16 TSUS = 0.72 TSIS.
At intermediate radii, ρ drops faster than r−2.

Case II: flat, Λ 6= 0 models. The profile varies with epoch of collapse, approaching the universal shape
of case I above for early collapse. For example, for Ω0 = 1 − λ0 = 0.3 and zcoll = (0; 0.5; 1), we obtain
rt/r0 = (30.04; 29.68; 29.54), ρ0/ρt = (529.9; 520.8; 517.2), and T/TSUS = (2.188; 2.170; 2.163), respectively.

3. DWARF GALAXY ROTATION CURVES AND THE VMAX − RMAX CORRELATIONS

The TIS profile matches the observed mass profiles of dark-matter-dominated dwarf galaxies.
The observed rotation curves of dwarf galaxies can be fit according to the following density profile with a finite
density core (Burkert 1995):

ρ(r) =
ρ0,Burkert

(r/rc + 1)(r2/r2
c + 1)

. (1)

The TIS profile gives a nearly perfect fit to the Burkert profile, with best–fit parameters ρ0,Burkert/ρ0,T IS = 1.216,
rc/r0,T IS = 3.134 (see Fig. 2a).
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EQUILIBRIUM STRUCTURE OF COSMOLOGICAL HALOS 141

Fig. 2. (a) (left) Rotation Curve Fit. Solid line = Best–fit TIS; Dashed line = Burkert profile, where σ2
TIS =

〈v2〉/3 = kBT/m. (b) (right) vmax–rmax correlations. Observed dwarf galaxies (triangles) and LSB galaxies
(squares) from Kravtsov et al. (1998); Burkert: fit to data (Burkert 1995); SCDM: Ω0 = 1, λ0 = 0, σ8h−1 = 0.5
(cluster-normalized); OCDM: Ω0 = 0.3, λ0 = 0 (all COBE–normalized, subscript indicates n-value of tilt);
ΛCDM: Ω0 = 0.3, λ0 = 0.7, (COBE–normalized; no tilt); h = 0.65 for all.

How well does this best–fit TIS profile predict vmax, the maximum rotation velocity, and the radius , rmax,
at which it occurs in the Burkert profile? We find rmax,Burkert/rmax,TIS = 1.13, vmax,Burkert/vmax,TIS = 1.01
(i.e. excellent agreement).

The TIS halo model explains the observed correlation of vmax and rmax for dwarf spiral and
LSB galaxies, when the TIS halo model is combined with the Press–Schechter model to predict the typical
collapse epoch for objects of a given mass (i.e. the mass of the 1-σ fluctuations vs. zcoll) (see Figure 2b). Both
of the flat, untilted CDM models plotted, cluster–normalized Einstein–de Sitter and COBE–normalized, flat,
low–density models (Ω0 = 0.3 and λ0 = 0.7), as well as the slightly tilted (n = 1.14) open model (Ω0 = 0.3)
yield a reasonable agreement with the observed vmax − rmax relation, while the untilted (n = 1) and strongly
tilted (n = 1.3) open models do not agree with the data.

4. GALAXY HALO M − σV RELATION

Our TIS halo model predicts the velocity dispersion of galactic halos of different mass which
form in the CDM model according to N–body simulations. Antonuccio–Delogu, Becciani, & Pagliaro (1999)
used an N–body treecode at high resolution (2563 particles) to simulate galactic halos in regions of a single
and of a double cluster. They found that the agreement with the TIS model is quite good, much better than
with either of the other two models they considered, namely the singular isothermal sphere and the peak-patch
model of Bond & Myers (1996).

5. COMPARISONS WITH GALAXY CLUSTER OBSERVATIONS AND SIMULATIONS

The TIS halo model predicts the internal structure of X–ray clusters found by gas–dynamical/N–
body simulations of cluster formation in the CDM model. Our TIS model predictions agree astonish-
ingly well with the mass–temperature and the radius–temperature virial relations and integrated mass profiles
derived from numerical simulations by Evrard, Metzler & Navarro (1996; “EMN”). Apparently, these simula-
tion results are not sensitive to the discrepancy between our prediction of a finite density core and the N–body
predictions of a density cusp for clusters in CDM. Let X be the average overdensity inside the sphere of radius

r, X ≡ 〈ρ(r)〉/ρb. Then the radius–temperature virial relation is defined as rX ≡ r10(X)(T/10 keV)
1/2

Mpc,

and the mass–temperature virial relation by MX ≡ M10(X)(T/10 keV)1/2 h−11015 M�. A comparison between
our predictions of the mass–temperature relation r10(X) and the results of EMN is given in Figure 3a. For
the mass-temperature virial relation EMN obtain M10(500) = 1.11± 0.16 and M10(200) = 1.45, while our TIS
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142 ILIEV & SHAPIRO

Fig. 3. (a) (left) Cluster radius–temperature virial relation (z = 0). (triangles) CDM simulation results as fit
by Evrard et al. (1996); (continuous line) TIS prediction. (b) (right) Projected surface density of cluster CL
0024+1654 inferred from lensing measurements, together with the best–fit TIS model.

solution yields M10(500) = 1.11 and M10(200) = 1.55, respectively.
The TIS model for the internal structure of X-ray clusters predicts gas density profiles ρgas(r)

and X–ray brightness profiles I(θ) which are well fit by the standard β−profile,

ρgas =
ρ0

(

1 + r2/r2
c

)3β/2
, I =

I0
(

1 + θ2/θ2
c

)3β−1/2
, (2)

with β–values for the TIS β-fit which are quite close to those of simulated clusters in the CDM model but
somewhat larger than the conventional observational result that β ≈ 2/3 (see tables below). However, recent
X–ray results suggest that the true β-values are larger than 2/3 when measurements at larger radii are used
and when central cooling flows are excluded from the fit.

I(r) (observations) β

Jones & Foreman (1999) 0.4-0.8, ave. 0.6

Jones & Foreman (1992) ∼ 2/3

Balland & Blanchard (1997) 0.57 (Perseus)

0.75 (Coma)

Durret et al. (2000) 0.53 (incl. cooling flow)

0.82 (excl. cooling flow)

Vikhlinin, et al. (1999) 0.7-0.8

(fit by Henry 2000)

TIS β-fit (rc/r0,T IS = 2.639) 0.904

ρgas(r) (simulations) β

Metzler & Evrard (1997) 0.826 (DM)

0.870 (gas)

Eke, Navarro & Frenk (1998) 0.82

Lewis et al. (1999) (adiabatic) ∼ 1

Takizawa & Mineshige (1998) ∼ 0.9

Navarro, Frenk & White (1995) 0.8

TIS β-fit (rc/r0,T IS = 2.416) 0.846

The TIS halo model can explain the mass profile with a flat density core measured by Tyson,
Kochanski & Dell’Antonio (1998) for cluster CL 0024+1654 at z = 0.39, using the strong gravi-
tational lensing of background galaxies by the cluster to infer the cluster mass distribution. The
TIS model not only provides a good fit to the shape of the projected surface mass density distribution of this
cluster within the arcs (see Figure 3b), but when we match the central value as well as the shape, our model
predicts the overall mass, and a cluster velocity dispersion in close agreement with the value σv = 1200 km/s
measured by Dressler & Gunn (1992). By contrast, the NFW fit which Broadhurst et al. (2000) reports can
model the lensing data without a uniform-density core predicts σV much larger than observed.

6. SUMMARY

• The TIS profile fits dwarf galaxy rotation curves; combined with the Press-Schechter approximation, it
predicts the observed vmax − rmax relation for dwarf and LSB galaxies.
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• The TIS predicted M − σV relation agrees with high resolution N–body simulations of galactic halo
formation by Antonuccio–Delogu et al. (1999).

• The predicted mass–radius–temperature scaling relations and integrated mass profile of the TIS model
match simulation results for clusters in the CDM model in detail. Our solution derives the empirical
fitting formulae of Evrard et al. (1996), which also agree well with X–ray cluster observations at z = 0.

• The TIS X–ray brightness profile matches the β-fit profile with β ≈ 0.9, larger than typically reported
by X–ray observers, but very close to the results of gas–dynamical/N–body simulations of X–ray clusters
in the CDM model.

• The TIS solution fits the cluster mass profile with uniform–density core derived from strong gravitational
lensing data by Tyson et al. (1998) for CL 0024+1654 within the arcs, while accurately predicting the
observed σV on larger scales, too.

This work was supported by grants NASA NAG5-2785, NAG5-7363, and NAG5-7821, NSF ASC-9504046,
and Texas ARP 3658-0624-1999, and a 1997 CONACyT National Chair of Excellence at UNAM for PRS.
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