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RESUMEN

Describimos un programa de investigacion para conocer mejor las supernovas
de Tipo Ia (SNs Ia) mediante modelaje y observaciones espectroscépicas de es-
tos eventos en el cercano infrarrojo (CIR). El CIR entre 0.9u y 2.5u es excelente
para examinar ciertos productos de la explosién de las SNs Ia los cuales pueden con-
fundirse u oscurecerse en otras regiones espectrales. El analisis del CIR nos permite
fijar restricciones importantes sobre las propiedades fisicas de las progenitoras de
las SNs Ia y la dindmica de la explosién. Estos son pasos criticos en la comprensién
de la fisica de las supernovas de Tipo Ia.

Hemos identificado caracteristicas en los espectros CIR de SNs Ia que discrimi-
nan entre progenitoras de Poblacién I y II. Estas caracteristicas pueden restringir
significativamente la historia evolutiva de las SNs Ia. Tambien examinamos ciertos
productos de la combusién nuclear que nos permiten poner restricciones a la propa-
gacién de dicha combustion durante la explosién, y al comportamiento del frente
de combustién durante el evento. Podremos diferenciar entre los distintos modelos
de explosién en SNs Ia.

ABSTRACT

We describe a research program to improve the understanding of Type Ia
Supernovae (SNe Ia) by modeling and observing near infrared (NIR) spectra of
these events. The NIR between 0.9 and 2.5u is optimal for examining certain
products of the SNe Ia explosion that may be blended or obscured in other spectral
regions. NIR analysis will enable us to place important constraints on the physical
properties of SNe Ia progenitors and their explosion dynamics. These are critical
steps toward understanding the physics of Type Ia Supernovae.

We have identified features in NIR spectra of SNe Ia that discriminate between
Population I and Population IT progenitors. These features can significantly restrict
the evolutionary history of SNe Ia. We also examine certain products of the nuclear
burning that enable us to place constraints on the propagation of nuclear burning
during the explosion, and on the behavior of the burning front during the event.
We will be able to differentiate between the several explosion models for SNe Ia.
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1. INTRODUCTION

The tremendous brightness and apparent homogeneity of SNe Ia events make them excellent probes of the
universe at great distances. Type Ia supernova observations have provided high quality data for estimates of
the Hubble constant (Miiller & Hoflich 1994; Nugent et al. 1996), analysis of the matter density of the universe
(Hoflich, Wheeler, & Thielemann 1998 and references therein), and possibly demonstrated a positive value for
the Cosmological Constant (Riess et al. 1998; Perlmutter et al. 1999). The conclusion that the expansion rate
of the universe is increasing was declared the most significant scientific discovery of 1998 by Science Magazine.
Those results however, are based entirely on empirical analysis of light curve observations without any physical
foundation for the behavior. New methods of testing the cosmological implications from the observational data
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of SNe Ia are required. In addition to studying SNe Ia physics and evolution, our research is an important step
toward understanding the systematics and calibration of the high—z supernova searches.

The observed characteristics of SNe Ia strongly suggest that these events are the thermonuclear explosions
of Carbon/Oxygen White Dwarf (WD) stars (Hoflich & Khokhlov 1996 and references therein). The canonical
model for SNe Ia consists of a C/O WD accreting matter from a binary companion. As the WD approaches
the Chandrasekhar limiting mass, energy from surface burning of accreted material and compressional heating
ignites a thermonuclear runaway. This explosion mechanism distinguishes SNe Ia from all other supernovae,
which are thought to be core collapse events. Although this general scenario is accepted, the details of the
explosion and the progenitor remain under discussion.

2. MODELS

We are working with hydrodynamic simulations of the supernova explosion and a code for nucleosynthesis
and radiation transport that have been very successful in making predictions and analyzing the optical behavior
of SNe Ia (Hoflich & Khokhlov 1996). This code runs locally on a 40 processor parallel Beowulf system.

The event dynamics follow a Deflagration to Detonation Transition (DDT) explosion model. A prompt
detonation mechanism for SNe Ia would result in nearly all of the stellar material being burned directly to iron
and heavier products. That is inconsistent with observations of intermediate mass elements in SNe Ia spectra
near maximum light. An expansion phase is required prior to the explosion in order to allow burning at lower
densities and temperatures than would be possible in a prompt detonation. Our models include an initial
subsonic deflagration wave that becomes a detonation shock at a critical density. After transition, the burning
front proceeds by compressional heating at velocities near to the speed of sound. A deflagration front that
propagates at very nearly sonic speed may produce similar results. Soon after the shock reaches the surface of
the WD, the explosion products continue in homologous expansion.

As the layers of the supernova ejecta expand, the photosphere recedes in mass through these layers. Once
the photosphere has moved entirely within the envelope containing a particular element, we continue to observe
the expansion velocity of the inner edge of that layer until the density is reduced to the point that the element
is no longer detectable. In the models, we calculate the radial velocities of the explosion products and use them
to construct the synthetic spectra. In observation, radial velocities of the elements are determined from the
Doppler shifts of their spectral lines.

3. NIR SPECTRA

The model spectra we produce reveal products of the explosive nucleosynthesis and a few trace elements
from the progenitor. Among the metal lines that appear in NIR spectra is a MglI line near 1.05u. Magnesium
is a product of explosive carbon burning, but not oxygen burning for which the higher temperatures generate
products further along the alpha chain. That makes magnesium an excellent diagnostic tool for defining the
region of transition between carbon and oxygen burning during the explosion. This transition is a key aspect of
explosion models of SNe Ia that require both a deflagration (subsonic) burning front to produce the observed
intermediate mass elements, and a detonation (supersonic) burning front to produce sufficient energetics. We
will use this MgII line to probe the explosion dynamics as well as the propagation of the deflagration burning
front through the WD.

Another NIR feature is the Fe II line at 1.00u. When it is detected near maximum light, this line is an
indicator of the metallicity of the progenitor WD. In SNe Ia, electron capture is significant only within the inner
layers. The outer layers retain the initial electron to nucleon ratio (Y.) with which the progenitor was created.
For a WD with zero metallicity, Y. = 0.5 and that value is reduced as metallicity increases. Before maximum
light in SNe Ia, the only iron available to make the 1.00u Fe II line will be °*Fe generated by incomplete O
burning with Y, < .495. Soon after maximum light however, this line will be dominated by °¢ Fe which is the
decay product from %6 Ni through *®Co. We predict that this Fe IT line will be prominent before maximum light
in SNe Ia spectra from progenitors that have solar metallicity or greater, but will be undetectable in spectra
from low metallicity progenitors.

The ability to determine metallicity in the progenitor will create a new tool to explore the characteristics
of SNe Ia as a function of redshift and of the morphology of the host galaxy. This result is critical to the
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use of SNe Ia for cosmology because it permits study of the systematic effects from the comparison of distant
supernovae to nearby events. Alternatively, a low electron to nucleon ratio may be achieved by a large number
of Helium shell flashes in the progenitor evolution. We also study other features in NIR spectra, including the
Ca II line at 1.2u, and the Si II line at 1.7p.

Comparing two of our models to data from SN1994D (Meikle 1996) demonstrates the sensitivity of our
technique (see Figure 1). The models are identical except for a 10% difference in the density at which the nuclear
burning front makes the transition from a subsonic deflagration to supersonic detonation. The difference in
transition density produces a change the radial velocity at the inside edge of the magnesium envelope of only
1000 km/s, but we are able to easily observe the change in our model spectra. The range of minimum velocities
for Mg II in reasonable SNe Ia models is about 5000 km/s. Our ability to distinguish a 1000 km/s difference
makes this a very accurate diagnostic tool.
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Fig. 1. The figures show synthetic spectra produced by our models (smooth line) superimposed on data from
SN1994D (Meikle 1996). The vertical axis is normalized flux, and the horizontal axis is wavelength in microns
(divisions of .01y are labeled at: 1.05, 1.1, 1.15, 1.2 and 1.25). The two models are identical except for a
10% difference in the density at which transition occurs from deflagration burning (subsonic) to detonation
burning (supersonic). This change in transition density produces a change in the minimum radial velocity for
magnesium of about 1000 km/s. The Mg II line can be seen in the data as a P-Cygni profile with a blue—shifted
absorption minimum at about 1.05u. The difference in the accuracy of the fit between the models and the data
is apparent. Our models can easily identify a 1000 km/s difference in radial velocity.
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4. OBSERVATION

An important goal of this program is to increase the available data on SNe Ia in the NIR. We currently have
four NIR spectra from SNe Ta: 1986Y, 1994D, 1998bu and 1999by. Additional observations are required for
statistical completeness and to cover a range of peak absolute magnitudes. The metal lines we want to observe
will be available from a few days after the explosion until about one week after maximum light. The window
of opportunity will depend on discovery time, but typically we will have approximately two weeks to make the
observations. An analysis of supernova discoveries since January 1, 1999 (CBAT 2000), suggests that for an
instrument and telescope combination with a limiting magnitude of 16.5, there is a better than even chance
that on any given night there will be a SNe Ia event within 15 days of discovery available for observation.
Current SNe Ia discovery programs are optimized for slightly dimmer events and for a limiting magnitude of
17.5 it is 95% likely that at least one SNe Ia target will be available and often there will be more than one.

5. CONCLUSION

Our program will constrain SNe Ia physics by comparing model spectra between 0.9u and 2.5u to data
from SNe Ia observations. Investigation in the NIR allows us to monitor certain elements that are indicators
of SNe Ia behavior but are difficult to observe in other spectral regions. The models will cover a range of
progenitor compositions and explosion dynamics and we have shown that they are responsive to small changes
in parameter space. Constraints we provide on progenitors will improve the understanding of SNe Ia evolution.
Additional constraints on explosion dynamics will have implications for the cosmological use of SNe Ia data as
well as contributing to the understanding of the physics of Type Ia Supernovae.
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