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STAGNATION KNOTS IN PRECESSING JETS

Andrew J. Lim

Department of Physics and Astronomy, University College London

RESUMEN

Se investiga el problema de la formación de nudos de estancamiento en la cabeza de un jet estelar en precesión
desde los puntos de vista anaĺıtico y numérico. Esta estructura de alta densidad se forma v́ıa un método similar
al que propuso Steffen (estas memorias) para la formación de FLIERs en nebulosas planetarias. Resultados
iniciales sugieren que la formación de un nudo de estancamiento posiblemente sea una inestabilidad intŕınseca
de jets en precesión.

ABSTRACT

The problem of the formation of a stagnation knot in the head of a precessing stellar jet is investigated from
both an analytical and numerical point of view. This dense structure is formed via a similar method to that
proposed by Steffen (these proceedings) for the formation of FLIERS in planetary nebulae. Initial results
suggest that the formation of a stagnation knot is possibly an intrinsic instability in precessing jets

Key Words: ISM: MOLECULAR CLOUDS — ISM: SHOCKS — STARS: FORMATION — STARS:

JETS AND OUTFLOWS

1. INTRODUCTION

Precessing jets from protostellar sources are be-
coming more common in the observations (see Pala-
cios, these proceedings). A heavy precessing jet will
have a fundamentally different bowshock structure
to that of a similar steady jet. We study here the
jet propagation and the ring-like structure formed at
the head of the bow shock as a result of the impact
point of the jet stem having a circular motion in the
cone traced out by the precession of the jet velocity
vector.

We derive a semi-analytical formula for propaga-
tion of a precessing jet and the collapse of the bow-
shock. Several very strong approximations have been
necessary to make headway with this problem, but
a comparison with bowshock simulations shows the
effect of these to be not too severe. A fuller account
of this work is presented in Lim (2001b).

2. THE PROPAGATION OF A PRECESSING
JET

We give here a brief description of the derivation
of the propagation equation for a precessing jet. The
advance speed of a steady jet is,

va =
βvj

1 + β
, (1)

where, β =
√

nj/ne. In general this approach is not
appropriate for a precessing jet, as the impact point

of the jet stem on the bow shock is not stationary. If
the leading edge of the jet stem is coincident with the
point A at time, t, then the point, A, receives ram
pressure support from the jet stem until the following
edge of the jet stem just passes A at time, t + τ .
Trigonometrical arguments yield the time interval, τ
to be,

τ =
2

ω
sin−1

( rj

2d

)

. (2)

For the rest of the precession period, the bow shock
at A coasts into the environment. When the leading
edge of the bow shock returns to A we assume that
the advance speed at A is “reset” to va. If the mo-
mentum, Pτ , imparted during τ , is equivalent to the
jet pointing directly at A for τ seconds and results
in a cylindrical section of the jet below A. If we ne-
glect sideways ejection of material and the effect of
thermal pressures, then the sweeping up of environ-
mental gas results in the jet section, undergoing the
deceleration,

dv(t)

dt
= −

πrj
2v(t)

3
ρe

Pτ
. (3)

This equation can be integrated twice to give,

x(t) =
Pτ

πrj
2ρe

[

(

2πrj
2ρet

Pτ
+

1

va
2

)1/2

−
1

va

]

. (4)

Within our assumptions, we can now find the ad-
vance distance of the point A in a single precession
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period. Substituting in the form of Pτ described
above and applying a generous amount of manip-
ulation, the total distance advanced is,

D = vaτ + uτ

[

(

2va

u

T − τ

τ
+ 1

)1/2

− 1

]

, (5)

u =
ρjvj + ρeva

ρe
.

This is valid for τ < T , but is not sufficient to de-
fine the propagation distance of the jet. A starting
point is provided by making the assumption that for
d < rj, the jet propagates as a steady jet. We can at
least be sure that the point at the centre of the pre-
cession cone receives ram pressure support while this
condition is satisfied. If we ignore distortion of the
jet due to the precession, we can say that a transition
occurs at the point d = rj from the behaviour of a
steady jet to that of a precessing jet. This defines a
transition height, ht = rj/ tan θ and transition time,
tt = rj/(va tan θ). Thus, for t < tt we have,

h =
rj

tan θ
+ nD cos θ, (6)

and a distance along the ejection vector,

X =
ht

cos θ
+ nD.

Due to the definitions of tt and ht above these expres-
sions refer to the “leading point” of the bowshock
ring.

One further complication exists, as the jet propa-
gates in the precession cone it is stretched into a helix
of radius d. This results in a linear expansion of the
jet gas and as the jet moves out from the source its
density drops as, ρj(h) = ρj,0rj/(h tan θ).

Equation (6) is not a purely analytical expression
since the ratio T/τ , and hence D changes with h, but
the equation can be very simply integrated numeri-
cally. Figure 1 shows a series of such integrations for
jets with various opening angles as a plot of prop-
agation distance against time. The parameters of
these jets are as follows: ρj = 1000mH, ρe = 100mH,
rj = 3.0 × 1016, vj = 302 km s−1, and T = 200 yrs.
The straight line is obviously the propagation of a
steady jet (θ = 0◦), and the precessing jets show the
modified D ∝ t1/2 behaviour of equation (6). One
can clearly see a large variation in the propagation
distance which increases with opening angle. Even
for an opening half-angle of only 1◦ a measurable dif-
ference in the propagation distance is obtained after
the jet has moved out to a distance of the order of
parsecs.

Fig. 1. Several integrations of the propagation formula

for jets with various precession angles.

3. THE FORMATION OF STAGNATION
STRUCTURES

Once the impact circle widens to a given radius
the central point of the bowshock will collapse and
environmental material can flow inward from the,
now ring-shaped, bowshock and be trapped in the
central region. This is very similar to the formation
mechanism of FLIERS in planetary nebulae recently
suggested by Steffen (these proceedings).

In order to derive a condition for the collapse
we require the radial bowshock shape, Masson &
Chernin (1993) derive an approximate shape from
momentum balance arguments and Raga & Cabrit
(1993) calculate the shape of bowshocks internal to
a jet cocoon which result from sideways ejection of
material from a velocity variable jet. These last au-
thors also state that the calculation of a leading bow
shock shape is a difficult problem—we will attempt
to make it easier.

Considering the radial structure (from the point
at the centre of the bowshock ring) and neglecting
azimuthal motion in the ring, we see that environ-
mental material which encounters the bowshock can
move only in one of 2 directions. Namely, outwards
and down the outer face of the (global) bowshock
structure or inwards towards the centre, where we
assume it will eventually become part of the stag-
nation knot. If we also ignore radial variations in
the shape of the ring bowshock, the problem can be
reduced to one dimension.

Firstly, we approximate the speed, vej, at which
material is ejected sideways out from the stagnation
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region of the bowshock. Applying the formulae from
Raymond (1994), we can obtain temperatures for the
material behind the both the jet and bowshock. Our
sideways ejection will thus have 2 components, in
keeping with our strong (some might say sickening)
simplifying assumptions, we consider this to be a
single outflow at a single velocity determined by the
mean temperature,

T =
1

2

{

3m

16k

[

(vj − va)
2 + va

2
]

}

. (7)

If we assume that the material is ejected sideways
sonically then the ejection speed, vej, will be the
sound speed determined by T , and we can only hope
that the effect of our averaging assumption is in some
way reduced by the fact that vej depends upon

√
T .

For strong shocks, we can (with some manipulation)
obtain,

vej =
vj

4(1 + β)

√

3(1 + β2). (8)

This equation neglects changes in the advance speed
from the push/drift cycle of the precession. We can
also obtain the mass loss rate, from the stagnation
region as being, by definition, the inflow rate from
the jet and environment. Under the assumptions
above (and with more manipulation),

Ṁ =
0.5πrj

2vj

1 + β

(

ρj +
√

ρjρe

)

, (9)

So our problem has been reduced to finding the
curved path of a planar outflow, velocity vej and

mass loss rate Ṁ which is moving relative to an en-
vironment of density, ρe with speed va. Fortuitously,
a very similar problem has recently been solved ana-
lytically by Cantó & Raga (1995), and we apply their
adiabatic path, which is a simple parabola given by,

z =
1

2λ
y2, (10)

where, y and z are coordinates measured from the
stagnation point of the path. λ is a constant de-
noting the radius of curvature of the jet path at the
stagnation point. Substituting the expressions above
into the definition of λ and manipulating as far as
possible, yields,

λ =
rj

4

[

(1 + β−1)
√

3(1 + β2)
]1/2

. (11)

Figure 2 shows a schematic diagram of the prop-
agation of the precessing jet. At time, t, the bow-
shock on the right hand side of the precession cone
is at point, A this is also the impact point of the

O

B

1

A

C
y

z

l

m

h

θθ

D

x

x 2

Fig. 2. Schematic illustration of the propagation of a

precessing jet over half a period.

jet stem at time, t. After half of one precession pe-
riod the impact point of the jet stem has moved to
B, and the bow shock on the right has drifted to C.
Also shown is the coordinate system, y − z, which
pertains to equation (10).

We also require the distance, Z, from D to C.
Geometrically, this is,

Z = X1(1 − cos 2θ) + D(T/2).

For a knot to be formed, the distance from the line,
X2, to the bowshock formed at C must be less than
l = X1 sin 2θ, Our knot formation condition is there-
fore,

X1 sin 2θ >
√

2λZ + rj, (12)

where rj is added since we measure y from the edge
of our jet section.

4. 3D SIMULATIONS OF STAGNATION KNOT
FORMATION

We use the 3D version of the Reefa linked adap-
tive grid code which solves the well known Euler fluid
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Fig. 3. Several timeslices of the 3D simulation. The

dotted line represents the predicted collapse distance and

the solid bars the predicted propagation distances

dynamic equations on a 3-dimensional binary adap-
tive grid. The technical aspects of the code are de-
scribed in detail in Lim & Steffen (2001) and Lim
(2001a).

A several simulations performed to with which
the analytical results were compared, only one
is shown here. The parameters of this simula-
tion are: rj = 1.2 × 1017 cm, ρj = 1000 cm−3,
vj = 307.7 km s−1, θ = 12.5◦, and T = 400 yrs. This
jet propagates into a stationary, quiescent medium
of density, ρe = 100 cm−3, and the initial jet and
environment temperatures are 10,000 K. Timeslices
from this simulation are shown in Figure 3. It can be
seen that the estimated propagation distance (shown

A. J. Lim: Dept of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT
(ajl@star.ucl.ac.uk).

by solid bars) matches well with the numerical sim-
ulation. We also see a good match for the pre-
dicted height of the bow shock collapse (dotted line
in Fig. 1).

5. CONCLUSION

We have derived from a semi-analytical point of
view the propagation of a precessing jet and the for-
mation of stagnation structures in the bowshock of
such a jet. It is found that precession results in the
advance of the leading point of the bowshock takes
place according to a modified t0.5, law as opposed to
the linear propagation off a steady jet. For opening
angles larger than a few degrees, a precessing jet will
have propagated a much smaller distance in a given
time than an otherwise identical steady jet.

We have also derived a condition for the collapse
of the central point of the bowshock due to a lack
of ram pressure from the jetstem which impacts in a
circle around the this point. This is also seen in sim-
ulations, matching well with the distances predicted
in the analytic model. The formation of stagnation
features in concave sections of the bowshock may
leave a tracer in jets which have undergone episodic
precession. Alternatively, in continuously precessing
jets, this process will result in one or more dense fea-
tures in the head of the jet. Given strong molecular
cooling, these stagnation features may be long lived
and even drift ahead of the decelerating bowshock
of a large-angle precession jet. Precessing jets are,
therefore, a possible source of high velocity clumps
of material in star-forming regions. Such ejecta are
likely to be chaotically structured due to the time
dependent nature of their formation, giving rise to
the idea of an “interstellar blunderbuss”.

The author is grateful to the organizers of the
meeting for organizing the meeting.
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