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RESUMEN

En esta contribución presento resultados recientes sobre las propiedades de
acumulación de galaxias, grupos, cúmulos y supercúmulos de bajo redshift (z≤1).
Presento, a su vez, lo esperado y lo medido con respecto al grado de evolución
de la acumulación de galaxias. Hemos usado el catálogo fotométrico de galaxias
extráıdo de las primeras imágenes del “Sloan Digital Sky Survey”, para estudiar
las propiedades de acumulación de pequeñas estructuras de galaxias, pares, tŕıos,
cuartetos, quintetos, etc. Un análisis de la función de correlación de dos puntos, en
un área de 250 grados cuadrados del cielo, muestra que estos objetos, al parecer,
están mucho más acumulados que galaxias individuales.

ABSTRACT

In this contribution I present current results on how galaxies, groups, clusters
and superclusters cluster at low (z≤1) redshifts. I also discuss the measured and
expected clustering evolution. In a program to study the clustering properties of
small galaxy structures we have identified close pairs, triplets, quadruplets, quintu-
plets, etc. of galaxies in the Sloan Digital Sky Survey commissioning imaging data.
An analysis of the 2-point angular correlation function on an area of more than
250 square deg2 show that these objects appear to be appreciably more strongly
clustered than single galaxies.
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1. INTRODUCTION

For more than two decades the clustering proper-
ties of galaxies and of clusters of galaxies have been
the subject of numerous studies. It seems that clus-
ters are more strongly clustered than galaxies; the
correlation length increases with richness (Bahcall
& Soneira 1983; Bahcall 1988; Postman et al. 1992;
Croft et al. 1997; Abadi et al. 1998). A central issue
has been the existence of a common physical mech-
anism to explain clustering properties from galax-
ies groups to rich clusters. The richness dependence
of the correlation function is generally explained in
terms of high-density peak biasing of the galaxy sys-
tems (Kaiser 1984), and is seen in cosmological sim-
ulations (e.g. Bahcall & Cen 1992, Colberg et al.
2000 and references therein).

In this paper I describe the main statistical
tools used in characterizing clustering and define
co-moving correlation length, effective volumes and
mean system separations. Then, a description of
current results of clustering of galaxies at low red-

shift (Sloan Digital Sky Survey) and its evolution
(CNOC2 redshift survey, Shepherd et al. 2001) are
discussed. Finally, I present the clustering properties
of small groups and richer clusters and discuss our
recent results on the correlation properties of pairs
and triplets of galaxies from the SDSS commission-
ing survey (Infante et al. 2002).

2. CHARACTERIZING CLUSTERING

Great efforts have been made to develop statis-
tical tools to describe and analyze the manner in
which galaxies and groups of galaxies cluster. The
most common statistics are the N point spatial cor-
relation functions ξ(r). (For details refer to Limber
1953, 1954; Groth & Peebles 1977; &; Peebles 1980).
Unfortunately, these functions are hard to obtain -
both in terms of telescope time and data reduction -
if one wants to reach the faint magnitudes needed to
study large volumes and the evolution of clustering.
An alternative, which requires a much smaller invest-
ment of telescope time, is to use angular correlation
functions, (e.g. Peebles 1980, pp. 180 - 195). Given
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a knowledge of the redshift distribution of the sample
and making a few simple assumptions one can invert
the angular function to estimate the spatial correla-
tion function. In spite of the fact that many details
are lost due to the integral nature of the angular
correlation function, it is clearly the preferred tool
for studying the evolution of the covariance function
to large look-back times, and for measuring spatial
correlation functions over large volumes of space.

2.1. Definitions and Estimators

Let’s consider a random distribution of points. If
n is the number density of points, the probability of
finding one point in volume dV is,

dP = ndV .
The joint probability of finding one point in dV1 and
a second one in dV2 separated by a distance r is,

dPr = n2dV1dV2.
And, in general, the joint probability of finding one
point in dV1, a second one in dV2, a third one in dV3,
etc. is,

dPr = nN dV1dV2...dVN .
Now, if the distribution of points in space is clus-

tered, the joint probability of finding one point in
dV1 and a second one in dV2 separated by a distance
r is,

dPr = n2(1 + ξ(r))dV1dV2,
where, ξ(r) is the spatial covariance function.

On the other hand, if the distribution is a con-
tinuous function f(x), then

< f(x1)f(x2) >=< f >2 (1 + ξ(x12)),
where the fourier transform of the covariance func-
tion is,

ξ(r) =
∫

~k ei~k·~rP (~k)d3~k,
where P is the power spectrum. Since P depends
only on k,

ξ(r) = 4π
∫

∞

0
k2P (k) sen (kr)

kr dk and r ≡ |~r|.
In Practice, the two-point angular correlation

function is estimated as,
dP (θ) = n2[1 + ω(θ)]dΩ1dΩ2,

where Ω1 and Ω2 are two solid angles separated by
an angular distance θ.

Given a catalogue of positions, we can now
estimate ω(θ). The most common estimators are:
A- Infante et al. (1994)

ω(θ) = Ndd Nr

B Ndr(Nd−1)
−

Nrr Nr1

Nrr1
(Nr−1) ,

where Ndd and Ndr are the numbers of data-data
and data-random pairs respectively, Nd and Nr are
the numbers of data and random points respectively;
r1 refers to a different set of random points. In this
estimator the following corrections are considered:
-Edge effects ωrd = Nrd

Nrr
− 1

-Integral constraint (B)
∫

w(θ)dΩ1 dΩ2 = 0
-Unclustered objects. A constant to be determined
after estimating the number of stars miss-classified
as galaxies.
B- Landy & Szalay (1993)

w(θ) = Ndd−2Ndr+Nrr

Nrr
.

2.2. The co-moving Correlation Length

We relate our ω(θ) measurements to the spatial
correlation functions through inversion. The spatial
correlation function is assumed to be a power law
weighted by the standard phenomenological evolu-

tionary factor, ξ(r, z) =
(

r
r0

)

−γ

(1+ z)−(3+ε), where

r is the proper distance, r0 is the proper correla-
tion length, and ε is the clustering evolution index.
ε = γ−3 corresponds to clustering fixed in comoving
coordinates, while ε = 0 represents stable clustering
in physical coordinates (Phillips et al. 1978).

To obtain the correlation length r0 we invert Lim-
ber’s equation (Limber 1953). If ω(θ) = Aωθ(1−γ),
then r0 is given by

rγ
0 = A−1

ω C

∫

∞

0
g(z)(dN/dz)2dz

[
∫

∞

0

(dN/dz)dz]2
,

C = π1/2 Γ[(γ−1)/2]
Γ(γ/2) ,

g(z) =
(

dz
dx

)

x1−γF (x)(1 + z)−(3+ε−γ);
where x(z) is the coordinate distance and

F (x) = [1 − (H0a0x/c)2(Ω0 − 1)]1/2.
The H0 dependence of g(z) is cancelled by that in

the measured value of r0. The strong dependence of
Aω on dN/dz is clear in this equation. Note in par-
ticular that in the above equations there is no depen-
dence on galaxy evolution, except in the calculation
of the redshift distribution dN/dz. (Peebles 1980,
eqs. [56.7] and [56.13]). However Limber’s equation,
as presented here, does assume that the clustering is
independent of luminosity; the high-redshift objects
in our narrow magnitude slice are of higher luminos-
ity than the low-redshift objects.

2.3. Effective Volumes and Mean Separations

The effective volume of the sample is,

V =

∫

zmax

zmin

(dN/dz)V (z)dz
∫

zmax

zmin

(dN/dz)dz
,

which then yields the number density, n =
Nsystems

V ,

and mean separation, d =
(

1
n

)1/3
.

3. CLUSTERING OF GALAXIES

Traditionally, the derivation of ω(θ) or ξ(r) has
been approached in two different ways: (a) by means
of catalogues of galaxies - sometimes with redshift in-
formation - which cover vast areas and (b) from deep
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samples of galaxies, obtained with large telescopes
which have a small field size on the sky. These two
methods sample the clustering properties of the Uni-
verse to very different depths.

Given the limited space, a complete review of the
subject is not possible. Nevertheless, I will focus
on the most recent results from the Sloan Digital
Sky Survey (SDSS) and from the Canadian Network
for Observational Cosmology (CNOC2). The latter
describe the clustering properties of galaxies in the
nearby Universe, while the former is a description of
how the galaxy clustering pattern evolve with red-
shift.

3.1. Clustering of Galaxies at Low Redshifts

The Sloan Digital Sky Survey is a photometric
and spectroscopic survey of about 1/4 of the sky,
above Galactic latitude of ∼ 30◦ (York et al. 2000).
The photometric data are taken with a dedicated 2.5
m altitude-azimuth telescope at Apache Point, New
Mexico, with a 2.5◦ wide distortion-free field and an
imaging camera consisting of a mosaic of 30 imag-
ing 2048×2048 SITe CCDs with 0.4′′ pixels (Gunn
et al. 1998). The CCDs are arranged in six columns
of five CCDs each, using five broad-band filters (u′,
g′, r′, i′ and z′). The total integration time per filter
is 54.1 seconds. Each column of CCD’s observes a
scanline on the sky roughly 13′ wide; the six scan-
lines of a given observation make up a strip. The
measured survey depth is 22.0, 22.2, 22.2, 21.3, and
20.5 magnitudes for the 5 filters, respectively. The
SDSS photometric system is measured in the ABν

system (Oke & Gunn 1983; Fukugita et al. 1996).
Current analysis use imaging data taken during

the commissioning period of SDSS (on 21 and 22
March 1999), which together make up a strip 2.5◦

wide and 100◦ long centered on the Celestial Equa-
tor (runs 752 and 756); these data are included
in the SDSS Early Data Release (Adelman et al.
2001). These runs extend over the area 7h.7 <
R.A. (2000) < 16h.8 and −1◦.26 < Dec. (2000) <
1◦.26, although the two strips overlap for only the
central part of this right ascension range. The see-
ing ranged from 1.2” to 2.5”.

The main result is that ω(θ) is a power-law with
an exponent of ≈ −0.7 over 2 orders of magnitude,
from scales between 1 arcmin to 0.5 degree. There
appears to be a break in the power-law at scales 1 -
2 degrees. At θ < 1′, the fit is not consistent with a
power-law.

Fig. 1. The SDSS early galaxy data angular 2-point
correlation function (filled circles), within the mag-
nitude interval 18 < r∗ < 19. (This plot is Fig. 1 in
Connolly et al. 2002). It is compared with the corre-
lation function from the APM (Maddox et al. 1990)
measured over the magnitude interval 18 < Bj < 20
(solid line). The SDSS correlation function has been
scaled to the depth of the APM data using Limber’s
equation.

3.2. Evolution of Clustering

To date, one of the best measures of the evo-
lution of galaxy clustering is from the CNOC2 Red-
shift Survey (Shepherd et al. 2001). They determine
the clustering evolution up to z ∼ 0.6 for late and
early type galaxies. Their survey covers a field of
about 1.55 deg2 and have redshifts for ∼ 3000 galax-
ies with Rc < 21.5 (MR < −20). They measure
the projected correlation function ωp in a volume
limited sample, over the comoving projected separa-
tion range 0.04h−1Mpc < rp < 10h−1Mpc. Galax-
ies were classified as being early or late according to
their Spectral Energy distributions, as determined
from broad band UBV RCIC photometry.

Early type galaxies were found to be more
strongly clustered, with a larger power-law index
(r0 = 5.45 ± 0.28h−1Mpc and γ = 1.91 ± 0.06),
than late type galaxies (r0 = 3.95±0.12h−1Mpc and
γ = 1.59± 0.08). In terms of evolution, Shepherd et
al. find that both type of objects have clustering
amplitudes, in comoving coordinates, that decrease
with time, ε = −3.9 ± 1.0 and ε = −7.7 ± 1.3 for
early and late type galaxies respectively. However,
the authors warn that the strong increase of clus-
tering with redshift might be apparent; it might be
caused by evolution of the galaxies themselves.
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4. CLUSTERING; FROM SMALL GROUPS TO
RICH CLUSTERS

We use a sample of 330,041 galaxies located on
278 square degrees of the Celestial Equator, with
magnitude 18 ≤ r∗ ≤ 20, obtained from SDSS
commissioning imaging data. We use these data to
select isolated pairs of galaxies. We determine the
angular correlation function of the galaxies and of
the galaxy pairs. We find the following results: (1)
Pairs of galaxies are more strongly clustered than
single galaxies. The angular correlation amplitude
of galaxy pairs is 2.9 ± 0.4 times larger than the
amplitude of galaxies. (2) The slopes of both corre-
lation functions are the same: 1.77 ± 0.04 (0.77 in
2D). (3) We measure ω(θ) to just under 1 deg scales,
corresponding to ∼ 9 h−1 Mpc at the mean redshift
of 0.22. No breaks are detected in the correlation
functions. (4) Assuming a redshift distribution
from the CNOC2 survey, we invert the angular
correlations and determine a spatial correlation
length, r0. We find that pairs have a significantly
larger correlation length than galaxies; r0 = 4.2±0.4
h−1 Mpc for galaxies and 7.8 ± 0.7h−1 Mpc for
pairs. (5) The mean separation between systems
(d = n−1/3) are d = 3.7 and 10.24 h−1 Mpc for
galaxies and pairs respectively. The results fall right
on the global r0 − d relation observed for galaxy
systems (Bahcall & West 1994).

Fig. 2. Correlation length r0 versus mean separa-
tion d(= n−1/3) for galaxies and pairs, as well as
groups and clusters of galaxies. Two cosmological
models, LCDM and SCDM, are shown for compar-
ison, as well as the original approximate relation of
r0 ≈ 0.4 d for rich systems (Bahcall 1988).

5. CONCLUSIONS

Current results of the clustering properties of
galaxy systems, ranging from galaxies to rich clus-
ters, are examined. Techniques for estimating the

two-point angular correlation function are discussed.
We relate ω(θ)to the co-moving correlation length
and estimate effective volumes by assuming a red-
shift distribution.

The first ω(θ) results from the Sloan Digital Sky
Survey are presented. The evolution of clustering to
z ∼ 0.6 is discussed. I take the CNOC2 survey as
the most up to date example.

The work on galaxy pairs and triplets suggests a
number of follow-up studies. We have defined pairs
of galaxies from their position in projection, and we
need to quantify what fraction of these objects are
physical pairs. We are in the process of carrying
out a redshift survey of a subset of the pairs sample,
which will also be useful in tying down the dN/dz
relation. We can also use photometric redshifts from
the multi-band photometry of the SDSS to define a
cleaner sample of galaxy pairs consistent with be-
ing at the same redshift. Finally, we have used just
under 300 square degrees of SDSS data; the survey
has now imaged over five times this much sky. Thus
we are in the process of defining samples of richer
(and thus rarer) systems from this larger sample,
and measuring their correlations, to fill in the r0 − d
relation between galaxies and groups.

LI acknowledges support from Proyecto Puente
PUC and Proyecto FONDAP “Centre for Astrophys-
ical Research”.
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