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UNIVERSE EVOLUTION WITH SCALAR FIELDS

Gabriella Piccinelli1

RESUMEN

Diferentes consideraciones teóricas y observaciones recientes apuntan hacia la existencia de campos escalares
cosmológicos, con presión negativa y densidad de enerǵıa variable en el tiempo y con fluctuaciones espaciales –
este tipo de componente del Universo ha recibido el nombre de quintaesencia. Presentamos aqui un panorama de
la evolución cosmológica de campos escalares con diferentes potenciales, en presencia de un fluido barotrópico,
y de su efecto sobre la expansión del universo.

ABSTRACT

Cosmological scalar fields with negative pressure and a time-varying, spatially fluctuating energy density –
quintessence– have recently obtained wide support from different observations and theoretical considerations.
We present here an overview of the cosmological evolution of scalar fields with arbitrary potentials, in the
presence of a barotropic fluid, and their influence on the universe expansion.
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A few years ago, the Hubble diagram for type
Ia supernovae gave the first serious evidence for an
accelerating universe (Riess et al., 1998, and Perl-
mutter et al, 1999). The two major teams investi-
gating high–redshift SNe Ia obtained almost iden-
tical results: a systematic dimming of SNe Ia rel-
ative to that expected in the standard Einstein–de
Sitter model, best explained by the presence of a
cosmological constant–like component. At present,
various combinations of constraints from CMB, su-
pernovae and galaxy redshift survey favor the region
(Ωm,ΩΛ) ≈ (0.3, 0.7) (see e.g. Lineweaver (2001)).

As the theoretical understanding of the origin
of quintessence remains incomplete, a large va-
riety of effective potentials can be conceived for
the scalar field. In de la Macorra & Piccinelli
(2000), we have studied the behaviour of Friedmann–
Robertson–Walker spatially flat cosmologies contain-
ing a barotropic fluid (either matter or radiation)
and a scalar field with a self–interaction potential,
without making any hypothesis on which energy den-
sity dominates. We determine the equation of state
dynamically for each case. The parameter ωφ for the
effective equation of state for the scalar field will in
some cases oscillate between −1 and 1, before set-
tling to an asymptotical value. Some of these po-
tentials lead to an interpretation of dynamical cos-
mological constant. It must be stressed that recent
CMB data open the way for discriminating between
different quintessence models (Wetterich 2001).

The equations to be solved, for a spatially flat
FRW Universe, are:

1Centro Tecnológico, ENEP Aragón, UNAM.

Ḣ = −

1

2
(ρf + pf + φ̇2)

ρ̇ = −3H(ρ + p)

φ̈ = −3Hφ̇ −

dV (φ)

dφ
,

where H is the Hubble parameter, V (φ) is the
scalar field potential, 8πG = 1, ρf and pf are the
barotropic energy density and pressure respectively,
with a standard equation of state pf = (γf − 1)ρf ;
ρ = ρf + ρφ and p = pf + pφ.

As the universe evolves, the scalar field will go to
its minimum (φmin), rolling to infinity or oscillating
around its vacuum expectation value, depending on
whether φmin is finite or not. The oscillating be-
haviour of φ or λ is important in determining the
evolution of the cosmological parameters. We find,
in fact, that all model dependence is given in terms
of λ ≡ −V ′/V only. In terms of this parameter,
and using a variety of analytic and numerical tech-
niques, we were able to generalize to other cases the
expressions for the attracting solutions found in the
literature for the simple case of an exponential po-
tential. We have worked with the most usual forms
for the potential, which are also the basic blocks of
composite potentials constructed for fitting all the
cosmological requirements of different epochs.

We classify all the possible scenarios containing
a scalar field depending on the asymptotic value of
λ and its oscillating behaviour. This classification is
valid also for composite potentials which can have
different dominant terms in different epochs, but of
course the epoch when the scalar field starts to roll
down its potential has a cosmological relevance, lead-
ing to distinct possible evolution histories before the
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TABLE 1

ASYMPTOTIC BEHAVIOUR OF Ωφ AND γφ FOR DIFFERENT LIMITS OF λ AND AN EXAMPLE OF
POTENTIAL WHICH SATISFIES THIS LIMIT

λ(φ) = −V ′/V Ωφ = ρφ/ρ γφ e.g.V (φ) cosmological behaviour

const. >
√

3γf
3γf

c2
γf V0 e−cφ scaling solution, ρφ redshifts as ρf

const. <
√

6 1 c2

3
V0 e−cφ power-law inflation

∞ (no oscil.) 0 γf V0 e−ceφ
same attractors as for λ = const. >

√

3γf

but with a time varying λ

0 2n
2+n

(> γf ) ρφ rapidly decays

∞ (oscil.) cte 2n
2+n

(= γf ) V0 φn, n > 0 even scaling solution

1 2n
2+n

(< γf ) cosmological constant

0 1 0 V0 φ−n, n > 0 cosmological constant

final behaviour.
We present in Table 1 a summary of the asym-

potic values of the cosmological relevant quantities
for all different limits of λ. Some of these models
have been largely studied in the literature, see Sahni
& Starobinsky (1999) or Padmanabhan (2002) for a
review. The asymptotic behaviour starts when the
field has reached the bottom of the potential.

G. Piccinelli: Centro Tecnológico, ENEP Aragón, UNAM. Av. Rancho Seco s/n, Col. Impulsora, Ciudad
Nezahualcóyotl, México, (gabriela@astroscu.unam.mx).
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