HYDRODYNAMIC MODELS OF THE ACCRETION STREAM IN MAGNETIC CATACLYSMIC VARIABLES

Kunegunda E. Belle¹

Here I use the MHD code, FLASH, from the University of Chicago ASCI Center for Astrophysical Thermonuclear Flashes, to simulate initial two-dimensional simple models of accretion streams in magnetic CVs. These models explore the evolution of inflowing material for two white dwarf masses; $0.5M_{\odot}$ and $0.9M_{\odot}$. It is seen that a discontinuity forms at a height of 6.1×10^8 cm above the white dwarf 'surface' for $M_{\rm WD} = 0.5M_{\odot}$ and at 1.6×10^9 cm for $M_{\rm WD} = 0.9M_{\odot}$. These models will be developed further with the ultimate goal of completing a three-dimensional model of magnetic accretion onto a WD surface.

The Models: Models using different white dwarf masses were constructed. For each model, a 2D cartesian grid of width 4×10^7 cm and height 5×10^9 cm was used. An accretion stream of this width roughly corresponds to a fractional accretion area of f = 0.001 on the surface of a $0.9M_{\odot}$ white dwarf. The computational grid is set up so that one computational block is 2×10^7 cm on a side and three levels of adaptive mesh refinement (AMR) are allowed during the computation. Protons and electrons are used for the stream composition, the material is allowed to radiate, and a gamma-law EOS and plane parallel gravity are employed. The entire computational volume is given the initial stream parameters $T = 50,000 \text{ K and } \rho = 1 \times 10^{-10} \text{ g cm}^{-3}$. A downward velocity of -3×10^5 cm s⁻¹ is given to material above $y = 3 \times 10^9$ cm. Each model uses a 1 MG magnetic field.

Model 1. This simulation was performed for $M_{\rm WD} = 0.5 M_{\odot}$ (log g = 7.86). Figure 1 displays the temperature profile at times t = 0 and t = 69 s. This is the time at which a discontinuity forms at $y = 6.1 \times 10^8$ cm, as can be seen in the plot. After time t = 69 s, a numerically seeded instability develops.

Model 2. This simulation was performed for $M_{\rm WD} = 0.9 M_{\odot}$ (log g = 8.49). Figure 2 displays the temperature profile at times t = 0 and t = 42.5 s. This is the time at which a discontinuity forms at

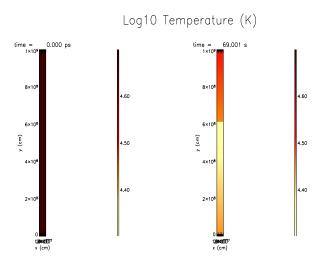


Fig. 1. Temperature profile for Model 1 ($M_{\rm WD} = 0.5 M_{\odot}$).

Log10 Temperature (K) 0.000 p 42.50 time = 2.0×10⁴ .65 1.5×1 1.5× 60 60 Ë (ED) 55 55 1.0×10 1.0×1 .50 .45 5.0×1 4.40 x (cm) x (cm)

Fig. 2. Temperature profile for Model 2 ($M_{\rm WD} = 0.9 M_{\odot}$).

 $y = 1.6 \times 10^9$ cm, as can be seen in the plot. After time t = 42 s, a numerically seeded instability develops.

The software used in this work was in part developed by the DOE-supported ASCI/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

¹X-2 MS P225, Los Alamos National Laboratory, Los Alamos, NM 87545 (belle@lanl.gov).