
IA
U

 C
o

llo
q

ui
um

 1
94

 -
 C

o
m

p
a

c
t B

in
a

rie
s 

in
 th

e
 G

a
la

xy
 a

nd
 B

e
yo

nd
 (

©
 C

o
p

yr
ig

ht
 2

00
4:

 IA
, U

N
A

M
)

Ed
ito

rs
: G

. T
o

vm
a

ss
ia

n 
&

 E
. S

io
n

RevMexAA (Serie de Conferencias), 20, 229–229 (2004)

SPH AND RADIATIVE COOLING

K. J. Manson1

I have investigated the effects of including a

more realistic cooling law in SPH simulations

of accretion discs. In order to improve the ef-

ficiency of the simulations, I have used Strang

operator splitting, and I have developed a

method of timestep control which guarantees

the accuracy and stability of the simulations.

Strang splitting (Strang, 1968) is used to numer-
ically solve a differential equation where the differ-
ential operator is split into two or more parts. This
scheme is appropriate for any such equation, but is
applied most effectively in cases where one part of
the equation has a different timescale to the rest, or
is somehow more difficult to solve or less stable.

Using Strang splitting means that the simulation
is no longer constrained to move with the smallest
timestep. Those physical processes which move more
slowly can be separated from those in the fast lane.
Each process can also be solved with the most ap-
propriate numerical scheme, meaning that the accu-
racy and stability is improved. On the whole, using
Strang splitting can result in dramatic improvements
in speed, accuracy and efficiency.

When using operator splitting, we are no longer
able to base the timestep size on an appropriate
physical condition. Ideally, one would hope that the
larger of the two natural timesteps was sufficiently
small to ensure stability of the entire scheme, how-
ever, this may not be guaranteed. Instead, a method
of determining an appropriate timestep is required,
hopefully one which easily adapts to changing simu-
lation conditions.

One simple solution is to generate some estimate
of the error involved, then demand that this error
be beneath a preset limit. In this way, not only is
stability guaranteed, but an upper limit is also set
on the overall error.

I have run several simulations of thin accretion
discs around an isolated, one solar mass object. The
first of these was an isothermal simulation, the rest
used more realistic cooling laws.

Figure 1 compares the stepsize required by the
Courant condition with the stepsize required to re-
solve the gravitational motion of the innermost par-
ticles. Clearly, if the simulation were to proceed at
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Fig. 1. The upper line is the timestep taken by the Strang

Splitting routine, the lower the step that would be taken

if Strang Splitting were not used.

0.0 0.1 0.2 0.3 0.4 0.5
radius

 

 

 

 

 

 

Th
er

m
al

 E
ne

rg
y

Isothermal

 + Particles

14 16 18 20 22 24
time

 

 

 

 

 

Ti
m

es
te

p 
Si

ze
Fig. 2. Left: The solid line is the energy of an isothermal

disc, the points are the energy of the cooled disc. Right:

the solid line is the Courant condition stepsize, the points

are the size required to maintain accuracy and stability.

this lower stepsize, it would take around ten times
as long. Strang Splitting provides a way of avoiding
problems of this nature.

Figure 2 shows on the left the temperature struc-
ture resulting from using an optically thin cooling
law. On the right is a comparison of stepsizes from
the physical conditions and the numerical stability.
In general, the numerical stability stepsize is the
smaller of the two. This means that if the physical
stepsize were taken the simulation would be unsta-
ble or the accuracy would be less than the required
limit.

Further details, explanations and evidence of the
improvements gained using these methods may be
obtained by contacting the author.
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