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THE MODIFIED RESTRICTED THREE BODY PROBLEMS

Ing-Guey Jiang1 and Li-Chin Yeh2

RESUMEN

El problema restringido de los tres cuerpos es importante en la dinámica de las estrellas dobles y múltiples y
de los sistemas planetarios. Extendemos la versión clásica de este problema a una situación que incluye un
anillo. Encontramos puntos de equilibrio y curvas muy distintas a las del caso clásico. Calculamos el valor del
exponente de Lyapunov para algunas órbitas.

ABSTRACT

The restricted three body problem is well-known and very important for the dynamics of binary and multiple
stars and also planetary systems. We extend the classical version of this problem to the situation that there
are some external forces from the belt. We find that both the equilibrium points and solution curves become
quite different from the classical case. We also determine the values of Lyapunov exponent for some important
orbits.
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1. INTRODUCTION

The three body problem is one of the most im-
portant problems of celestial mechanics and has been
analytically and numerically studied for centuries. In
addition to that, three body interaction also plays
an essential role for dynamics of binary and multiple
stars. See Valtonen (2004) and Dvorak et al. (2004)
and also their references.

On the other hand, because there are asteroid
belt and Kuiper belt for the solar system, discs of
dust for extrasolar planetary systems and also cir-
cumbinary rings for binary systems, these belt-like
structures should influence the dynamical evolution
of these systems. For instance, Jiang & Ip (2001)
show that the origin of orbital elements of the plan-
etary system of υ Andromedae might be influenced
by the belt interaction initially. Moreover, Yeh &
Jiang (2001) studied the orbital migration of scat-
tered planets. They completely classify the parame-
ter space and solutions and conclude that the eccen-
tricity always increases if the planet, which moves
on a circular orbit initially, is scattered to migrate
outward. Thus the orbital circularization must be
important for scattered planets if they are now mov-
ing on nearly circular orbits.

Therefore, Jiang & Yeh (2003) did some analysis
on the solutions for dynamical systems of planet-belt
interaction. In this paper, we further study the effect
of belts for dynamical evolution of a binary system.

1National Central Univ., Taiwan.
2National Hsinchu Teachers College, Taiwan.

2. THE MODEL

We consider the motion of a test particle influ-
enced by the gravitational force from the central bi-
nary and the circumbinary belt. The circumbinary
belt also provides the frictional force for the test par-
ticle.

We assume that two masses of the central binary
are m1 and m2 and choose the unit of mass to make
G(m1 + m2) = 1. If we define that

µ̄ =
m2

m1 + m2
,

then the two masses are µ1 = Gm1 = 1 − µ̄ and
µ2 = Gm2 = µ̄. The separation of the central binary
is set to be unity and µ1 = µ2 = 0.5 for all numerical
results in this paper.

The equation of motion of this problem is (Mur-
ray & Dermott 1999)



















dx
dt

= u
dy
dt

= v
du
dt

= 2v −
∂U∗

∂x
−

∂V
∂x

+ fαx

dv
dt

= −2u −
∂U∗

∂y
−

∂V
∂y

+ fαy,

(1)

where the potential U∗ is

U∗ = −

1

2
(x2 + y2) −

µ1

r1
−

µ2

r2
, (2)

r1 =
√

(x + µ2)2 + y2 and r2 =
√

(x − µ1)2 + y2.
V is the potential from the belt. The belt is a

annulus with inner radius ri and outer radius ro,
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THREE BODY PROBLEMS 153

where ri and ro are assumed to be constants. We
arbitrarily set ri = 0.2 and ro = 1.0 for all results in
this paper.

The density profile of the belt is ρ(r) = c/rp,

where r =
√

x2 + y2, c is a constant completely de-
termined by the total mass of the belt and p is a
natural number. In this paper, we set p = 2 for all
numerical results. Hence, for p = 2, the total mass
of the belt is

Mb =

∫ 2π

0

∫ ro

ri

ρ(r′)r′dr′dφ = 2πc(ln ro−ln ri). (3)

The gravitational force fb from the belt is

fb(r) = −

∂V

∂r
= −2

∫ ro

ri

ρ(r′)r′

r

[

E

r − r′
+

F

r + r′

]

dr′,

(4)
where F (ξ) and E(ξ) are elliptic integrals of the first
and second kind. Hence,

{

−
∂V
∂x

= fb
x
r

−
∂V
∂x

= fb
y
r
,

(5)

where fb is in Eq. (4).

The frictional force should be proportional to the
surface density of the belt and the velocity of the
particle. In the x direction, the frictional force is

fαx = −αρ(r)
dx

dt
(6)

and in the y direction, the frictional force is

fαy = −αρ(r)
dy

dt
, (7)

where α is the frictional parameter.

We substitute Eq. (2) and Eq. (4)-(7) into Eq.(1)
and have the following system:















































dx
dt

= u
dy
dt

= v
du
dt

= 2v + x −
µ1(x+µ2)

r3

1

−
µ2(x−µ1)

r3

2

−
2x
r2

×

∫ ro

ri

ρ(r′)r′
[

E
r−r′

+ F
r+r′

]

dr′ − αρ(r)u
dv
dt

= −2u + y −
yµ1

r3

1

−
yµ2

r3

2

−
2y
r2

×

∫ ro

ri

ρ(r′)r′
[

E
r−r′

+ F
r+r′

]

dr′ − αρ(r)v.

(8)
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Fig. 1. The curves of f(x, y) = 0 and g(x, y) = 0 (see the
text for details).

3. EQUILIBRIUM POINTS

The equilibrium points (xe, ye) of System (8) sat-
isfy the following equations

f(x, y) ≡ x −

µ1(x + µ2)

r3
1

−

µ2(x − µ1)

r3
2

−

2x

r2

∫ ro

ri

ρ(r′)r′
[

E

r − r′
+

F

r + r′

]

dr′ = 0,(9)

g(x, y) ≡ y −

yµ1

r3
1

−

yµ2

r3
2

−

2y

r2

∫ ro

ri

ρ(r′)r′
[

E

r − r′
+

F

r + r′

]

dr′ = 0. (10)

In Fig. 1, we plot the curves of f(x, y) = 0 (circles)
and g(x, y) = 0 (triangles) for different values of Mb.
Equilibrium points (xe, ye) are intersection of these
two. In Fig. 1(a), we set Mb = 0, so there is no
influence from the belt. We find there are five usual
Lagrangian points, L1, L2, L3, L4 and L5 for this
case. In Fig. 1(b), Mb = 0.15 and we still have the
five usual Lagrangian points. In addition to that,
there are two new equilibrium points in the upper
half-plane and another two in the lower half-plane.
In Fig. 1(c)-(d), we set Mb = 0.3 and Mb = 0.5
individually. We also find that in the upper half-
plane, there are two new equilibrium points, Fa and
Fb.

4. LYAPUNOV EXPONENT

Since we have discovered two new equilibrium
points near L4 (and another two near L5), it would
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154 JIANG & YEH

be interesting to investigate the orbital behavior
around these new equilibrium points Fa and Fb. For
a complicated system like ours, it is difficult to rigor-
ously prove if the orbits are chaotic near Fa and Fb.
Nevertheless, we use the calculation of the Lyapunov
exponent for some orbits whose initial conditions are
chosen to be close to Fa and Fb to understand how
sensitively dependent on the initial conditions these
orbits are. This is in fact one of the most important
methods to study chaotic systems. We follow Wolf
et al. (1985) to calculate the values of the Lyapunov
exponent numerically. To check if our calculation is
correct, we have reproduced the results of a given
system in their paper.

In general, a larger value of the Lyapunov expo-
nent means more sensitive dependence on the ini-
tial conditions. We choose the initial conditions
of the orbits to be close to the equilibrium points
Fa, Fb, L4 and L2 individually. Thus there are
4 different initial conditions for the orbital calcu-
lations. To understand the effects of belts with
different masses, we did calculations for 4 differ-
ent masses of the belt (Mb = 0, 0.15, 0.3, 0.5) for
each chosen initial condition. Although there are
no equilibrium points Fa, Fb when there is no belt
(Mb = 0), and the locations of equilibrium point Fa,
Fb, L4 and L2 would be slightly different for differ-
ent masses of the belt, we still call the initial condi-
tion (x, y, u, v) = (0.01, 0.0225, 0, 0) initial condition
Fa, (x, y, u, v) = (0.01, 0.06, 0, 0) initial condition Fb,
(x, y, u, v) = (0.01, 1, 0, 0) initial condition L4 and
(x, y, u, v) = (1.35, 0, 0, 0) initial condition L2.

Fig. 2(a)-(d) are the results of the Lyapunov ex-
ponent for initial condition Fa, Fb, L4 and L2 indi-
vidually. There are 4 curves in each panel of Fig. 2,
where the solid curve is the result of Mb = 0, the
dotted curve is the result of Mb = 0.15, the dashed
curve is the result of Mb = 0.3 and the long dashed
curve is the result of Mb = 0.5. It is obvious that
the values of Lyapunov exponent for initial condition
Fa, Fb are much larger than the ones for initial condi-
tion L4 and L2. From panels (a) and (b), we can also
see that the Lyapunov exponents for Mb = 0.5 and
Mb = 0.3 are larger than the values for Mb = 0.15
and Mb = 0. Interestingly, for orbits with initial
condition L4, the values of the Lyapunov exponent
are slightly larger for Mb = 0 as we can see in Fig.
2(c). In general, their values are small for both ini-
tial conditions L4 and L2. The values of the Lya-
punov exponent for orbits with initial condition L2

approach 0 when t tends to infinity. The orbits are
obviously not chaotic for this case.

(a)   
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Fig. 2. Lyapunov exponent (see the text for details).

5. ORBITS

In this section, we will discuss all the orbits whose
results of Lyapunov exponent have been shown and
discussed in last section.

Figs. 3, 4, 5 and 6 are the orbits on x − y plane
for initial conditions Fa, Fb, L4 and L2. There are 4
panels for each figure. Panel (a) is the result when
there is no belt, i.e. Mb = 0, panel (b) is the result
when Mb = 0.15, panel (c) is for Mb = 0.3 and panel
(d) is the result for Mb = 0.5.

If one looks at all these 4 figures of orbits at the
same time, one can immediately understand that it
seems the orbits with initial conditions Fa and Fb

are much more chaotic than the orbits with initial
conditions L4 and L2. This impression is completely
consistent with the one we get from the values of the
Lyapunov exponent.

To compare Fig. 3(a) with Fig. 4(a), we found
that the orbits are similar for initial conditions Fa

and Fb. However, from the comparison between Fig.
3(b) and Fig. 4(b), we found that the orbits are quite
different for initial condition Fa and Fb. These two
comparisons show that the existence of a belt does
make the orbits become more sensitive to the initial
conditions.

6. CONCLUDING REMARKS

We have provided the equations for a model
which modifies the classical restricted three body
problem by including the influence from a belt
around the central binary. We found that, in addi-
tion to the usual Lagrangian points, there are two
new equilibrium points, which we call Fa and Fb
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Fig. 3. The orbits with initial condition Fa.
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Fig. 4. The orbits with initial condition Fb.

around L4 (similarly, there are another two new equi-
librium points close to L5).

To study the orbits around these new equilib-
rium points, we calculate the values of Lyapunov ex-
ponents for orbits with 4 different initial conditions,
which are close to Fa and Fb, L4 and L2 individually.
We found that the belt makes the system even more
sensitive to the initial conditions for the orbits with
initial conditions Fa and Fb but does not make too
much difference for the orbits with initial conditions
L4 and L2. Because the equilibrium points Fa and
Fb happen to be near the inner part of the belt and
Lagrangian points L4 and L2 happen to be around
or out of the outer part of the belt in our system, it

Ing-Guey Jiang: Institute of Astronomy, National Central University, Taiwan (jiang@astro.ncu.edu.tw).
Li-Chin Yeh: Department of Mathematics, National Hsinchu Teachers College, Hsin-Chu, Taiwan

(lcyeh@bsd.nhctc.edu.tw).
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Fig. 5. The orbits with initial condition L4.
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Fig. 6. The orbits with initial condition L2.

seems that the orbits near the inner part of the belt
might be more unpredictable than the ones around
the outer part.
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