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THREE-BODY PROBLEM AND MULTIPLE STELLAR SYSTEMS

M. Valtonen1

RESUMEN

Las interacciones de tres cuerpos ocurren en cúmulos estelares, donde se dan encuentros entre binarias y estrellas
sencillas formando temporalmente sistemas triples. Las triples son generalemente inestables y se fragmentan en
una nueva binaria y una estrella sencilla. La simple dispersión de una estrella sencilla por una binaria también
ocurre. Ambos procesos pueden ser estudiados con la teoŕıa estad́ıstica del rompimiento y la dispersión de tres
cuerpos. En este trabajo, aplicamos la teoŕıa a las estrellas binarias, suponiendo que éstas han participado en
procesos de tres cuerpos. Se discuten las distribuciones de los peŕıodos, las excentricidades y los cocientes de
masa de las binarias obtenidos, y se comparan con muestras observacionales.

ABSTRACT

Three-body processes go on in star clusters where binary stars meet single stars and frequently form temporary
triple systems. The triples are typically unstable and break up into a new binary and a single star. Also
a simple scattering of a single star from a binary may take place. Both processes can be handled by the
statistical theories of three-body break-up and scattering. Here we apply the theory to binary stars, assuming
that binaries have been involved in the three-body process. The distributions of binary periods, eccentricities
and mass ratios are discussed from this point of view and compared with observational samples.

Key Words: BINARIES: GENERAL

1. INTRODUCTION

Numerical simulations of star cluster evolution
have shown that three-body interactions take place
among cluster stars frequently. In the three-body
break-up a binary is often expelled out of the clus-
ter and it becomes a binary in the general field of
stars of the Galaxy. There may still be further en-
counters with other stars later on, but on the whole
the “hard” binaries probably have their properties
more or less frozen since their escape from the star
cluster of their origin. We will now study what kind
of binary star population we expect from this pro-
cess and how it compares with the observed binaries.
In particular, we are interested to see if Öpik’s law
follows, i.e. if the orbital periods of binaries are uni-
formly distributed in the logarithmic scale. Also the
distribution of binary mass ratios can be predicted
for different types of primary stars.

2. BINARY ENERGY AND PERIOD

A statistical theory for the three-body break-up
was derived by Monaghan (1976) assuming that all
systems have a constant total energy E0. He derived
the distribution of the binding energy EB of the final
binary after the third body has escaped. The basic
principle of the theory is to assume that escapes hap-
pen in such a way that the phase space formed by

1Tuorla Observatory, Piikkiö, Finland.

the positions and momenta of the binary and the
third body becomes uniformly filled with the rep-
resentative points. Starting from this principle one
calculates the phase space volume σ and derives the
final distributions of various quantities. Some as-
sumptions are required on the way, and depending
on these assumptions different final distributions are
arrived at. Here we follow the calculation of Valto-
nen and Karttunen (2004) which is slightly different
from Monaghan (1976). The distribution of final bi-
nary energies is proportional to E−4.5

B rather than
E−2.5

B of Monaghan (1976). This modification is in
agreement with Heggie (1975). The binary binding
energy is normalised to the constant total energy E0

of the systems.
But in star clusters E0 may vary greatly from

one three-body system to another. Monaghan (1976)
calculates the available phase space volume σ which
is inversely proportional to |E0|:

σ(|E0|)d|E0| ∝ |E0|
−1

d|E0|. (1)

If for any reason the three-body systems are uni-
formly distributed in the E0 space then we expect
that the binary energies EB after the three-body
break-up also follow Eq. (1). i.e., Öpik’s law should
be valid. To what extent this is true can be found
out by studying young star clusters observationally
as well as by simulating star formation processes the-
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148 VALTONEN

oretically.
Hard binaries in star clusters tend to harden fur-

ther. At the limit of very hard binaries we may write
the average hardening rate

1

2
Mv2

0R∆ =

〈

d|EB |

dt

〉

= 3G2m3

B

M

M

n

v3

. (2)

Here M = (mamb)/(ma + mb), ma and mb are the
binary component masses, mB = ma + mb, M =
mB + ms, ms is the mass of the escaper, v0 is the
mean orbital speed of the binary, R∆ is the rate of
energy transfer, n is the number density of single
stars, v3 is the speed of the binary relative to the
single stars, and G is the gravitational constant. In
a star cluster we may regard the right hand side as a
constant in the first approximation, even though in
fact the density of stars n and the typical speed of
stars do vary during the cluster evolution. But using
this assumption, and also putting all stars equal to
1M�, the equation is easily integrated:

EB

(EB)0
=

16G2M2
�nT

v2
0
v3

, (3)

where (EB)0 is the initial value of the binary energy
|(EB)0| � |EB | and v0 is the corresponding mean
orbital speed. T is the time of escape of the binary
from the cluster since the birth of the star cluster.

Because of the evolution in the star cluster as
well as the effect of the Galactic tides, the cluster is
gradually dissolved. The time of dissolution td has
been estimated at

td ≈ 5.7 × 108

(

Mcluster

250M�

)(

1 pc

rh

)3

yr (4)

times a factor depending on the structure of the
cluster (Binney and Tremaine 1987). Here Mcluster

is the mass of the cluster and rh is its median ra-
dius. Since 250 solar mass stars within a sphere of
1 pc in radius makes the average number density
n = 250/( 4

3
π pc3) ≈ 60 pc−3, the equation may be

written by using this mean number density n:

td ≈ 5.7 × 108
(

n/60 pc−3
)

yr. (5)

We may take the typical escape time of the binary
to be half of td, i.e.

T ≈ 3 × 108(n/60 pc−3) yr. (6)

From here n may be solved and inserted into Eq. (3)
above. Then

EB

(EB)0
≈

16G2M2
�

v2
0
v3

(

T

3 × 108 yr

)

60 pc−3 × T

= 5.3

(

T

3 × 108yr

)2 [

v2
0v3

(km/s)3

]−1

.

(7)

Putting a typical number v3 = 0.25 km/s, and
starting from a hard binary with v0 = 1 km/s, we
expect to end up with

EB

(EB)0
≈ 20

(

T

3 × 108yr

)2

. (8)

In a typical hardening period of T = 108 yr we then
expect the average binary binding energy to increase
by a factor of 2 and the corresponding orbital period
to shorten by about a factor of 3.

Since |EB |
0
∝ v2

0 , the final value of |EB | does not
depend on v0 (i.e. on the initial orbital period) but
only on T . Therefore the distribution of final periods
P should depend on the distribution of T .

A numerical simulation of the Pleiades star clus-
ter by Kroupa, Aarseth and Hurley (2001) shows
that in its assumed 100 million year lifetime the bi-
nary period distribution shifts shortward by about a
factor of 3 at the end of large periods (P ∼> 30 yr).
This agrees with our simple estimate. At the end of
short periods no significant shift is detected in the
simulation.

Depending primarily on the cluster star density,
clusters live different lengths of time, and provide
different periods T for the hardening process. We
get an idea of the distribution of T from observations
of star clusters. The current age τ of a star cluster
is a representative time in the history of a cluster,
and may well tell us when a typical binary escape
happens. The distribution of τ is observed to be
(Wielen 1971)

f(τ) ∝ τ−1 (9)

in the interval 2×107 yr ∼< τ ∼< 5×108 yr, it steepens
beyond the upper limit. Let us then suppose that
also

f(T ) ∝ T−1 (10)

in this range.
Since EB/(EB)0 ∝ T 2, the corresponding period

ratio P/P0 ∝ T−3. Therefore we find

f(P/P0) =
f(T ) dT

d(P/P0)
∝ (P/P0)

−1. (11)

In a logarithmic scale the distribution of P/P0 is flat:

f(P/P0)

d log(P/P0)
= constant (12)

since d(P/P0) = (P/P0) d(log(P/P0)). This should
be valid over one and half orders of magnitude in T ,
which corresponds to over four orders of magnitude
in P/P0.
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Binary period distribution

Fig. 1. The period distribution of a sample of nearby
binary stars with a solar type primary (Duquennoy &
Mayor 1991, Fig. 7). Lines refer to theoretical expecta-
tions.

What is the range of validity of this result? At
the end of small T , below about T = 2×107 yr, there
is negligible binary hardening. At the other end,
T ≥ 5×108 yr, the power-law of Eq. (9) steepens and
the expected period distribution becomes (P ∼< 10
yr):

f(P/P0)

d log(P/P0)
∝ (P/P0)

3/2. (13)

These distributions are compared with observations
(Duquennoy and Mayor 1991) in Fig. 1. We notice
that the predicted break at the end of low values
of P/P0, below the orbital period of ten years, is
not borne out by observations. It appears that these
short period binaries come from a binary population
which have short periods to start with. Such “pri-
mordial” binaries are observed in star clusters and
they make an important contribution to the short
period end of the distribution.

The reason for the relative flatness of the short
period binary distribution may be in the star for-
mation process. Apparently, Eq. (1) applies there
at least over a limited range of E0. The scale free
property of the distribution for longer periods may
result from binary hardening. The steepening of the
period distribution beyond log(P/yr) ≈ 5 is well un-
derstood by the disruption of long period binaries
in the Galactic field. Relative to the stellar back-
ground, these binaries are “soft” and tend to become
even softer until they break up.

3. BINARY ECCENTRICITIES

The distribution of the eccentricities of binaries
leads to the same conclusion: tight binaries, with pe-
riods less than 3 yr, have a bell shaped distribution
with a peak around e = 0.3. Wider binaries, with
periods exceeding 3 yr, show a distribution which
agrees with f(e) = 2e, the distribution expected

after three-body evolution (Duquennoy and Mayor
1991, Kroupa 1995).

4. BINARY MASS RATIOS

The three body evolution also modifies the bi-
nary mass ratios. Binary pairs where both compo-
nents are massive are more likely to survive than
pairs with unequal masses. This makes the mass
ratio distribution evolve towards mb/ma ≈ 1. The
mass ratios obtained by picking pairs of stars at ran-
dom from the initial distribution of stellar masses
are therefore subject to later evolution.

Different binaries evolve by different amounts.
The most massive binaries tend to settle near cluster
centres and they are subject to many strong three-
body interactions. As a result, exchanges of binary
members take place until the binary is made up of
two rather heavy members.

Ordinary binaries are involved in fewer strong
three-body interactions. There we may assume that
only a single three-body interaction is responsible
for the mass ratio distribution. Starting from this
assumption, we may pick three mass values at ran-
dom from the Salpeter initial mass function f(m).
Then we use the probability distribution of

Ps =
m−2

s

m−2
s + m−2

a + m−2

b

(14)

to decide which star (ms) escapes and which are the
two others (ma and mb) that make up the binary
pair. The mass ratio m = mb/ma (mb < ma) is thus
obtained. Repeat the process many times and the
distribution of mass ratios is built up. The proce-
dure is best carried out by computer in Monte Carlo
fashion, i.e. by picking out random numbers from
suitable distributions.

The result of this operation is shown in Fig. 2
as a dashed line. A comparison of the data points
for a sample of binaries with B-type primaries (where
the Salpeter mass function is applicable) shows good
agreement. It thus appears that these binaries (of
typical orbital period 3 yr) have had at least one
three-body interaction in the past.

In the case of solar type (spectral class G) pri-
maries the Salpeter mass function for single stars is
not suitable. However, a flatter power-law, with in-
dex α = 1.25 in

f(m) ∝ m−α (15)

may be used. Then the same process as described
above leads to the distribution of Fig. 3 (dashed
line). The observations by Duquennoy and Mayor
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Mass ratios in binary stars

Fig. 2. The mass ratio of binary star components in
an observational sample with a B spectral type primary
(points with error bars; Evans 1995). The dashed line is
based on a theory where two lower mass companions for
the B-type star have been picked at random, and one of
the companions has escaped.

(1991) are well described except at the low values of
mb/ma where both the observations and the power-
law assumption are very uncertain.

For the most massive O-type stars this procedure
is not reasonable since numerous three-body encoun-
ters have in fact truncated from below the distribu-
tion of the possible mass values. Now we may pick
three mass values from the power-law distribution
with α = 3.2 (applicable to the upper end of the
mass range), all of which are above a given lower
limit. Then we again ask which one of the three
stars escapes, which ones make the binary and what
is their mass ratio. The mass ratio distribution built
up in this way is shown as a continuous line in Fig.
4. It agrees well with the observed O-star primaries
sample (Abt 1983).

The rather puzzling situation with the mass ra-
tio distribution varying as a function of the spectral
type of the primary is therefore explained as a re-
sult of three-body interactions among stars (Valto-
nen 1997).
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error bars; Duquennoy and Mayor 1991). It is compared
with the three-body theory with α = 1.25 (dashed line).
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THREE-BODY PROBLEM 151

DISCUSSION

Zinnecker – Where has this discussion on the dynamical origin of the binary period distribution been
published before? More specifically, is there a 3-body dynamical explanation of Poveda’s and Öpik’s law that
f(log P ) = constant between log Pmin and log Pmax?

Valtonen – As far as I know, this type of mechanism has not been discussed before.

Sterzik – Broadening of the period distribution due to the binary hardening process by passing through
star clusters is an evolutionary process that lasts a long time. Broad period distributions and very short-period
(spectroscopic) binaries are, however, already frequent in the pre-main-sequence phase. Could you please
comment?

Valtonen – This mechanism assumes a broad range of environments from which binaries came from. There-
fore, one should not expect Öpik’s law to apply in individual clusters over the same wide range as among the
field binaries. Short-period binaries probably require a different mechanism.

Salvador Curiel, Mauri Valtonen and Andrei Tokovinin.


