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THE STELLAR MASS AND ANGULAR MOMENTUM PROBLEM

IN STAR FORMATION

H. Zinnecker1

RESUMEN

En esta contribución describo algunas ideas viejas y nuevas que explican la relación log-normal de ambas:
la función inicial de masa (IMF) y la distribución de separación del semi-eje mayor de estrellas binarias de
baja masa. Resalto los art́ıculos clásicos de Peter Bodenheimer, encaminados hacia la solución de ambos
problemas, basados en la fragmentación rotacional jerárquica de una nube de gas colapsante. Describo también
modificaciones más recientes y que por ende involucran a la fragmentación bajo una turbulencia supersónica.

ABSTRACT

In this contribution I describe some old and new ideas explaining the log-normal shapes of both the Stellar
Initial Mass Function (IMF) and the semi-major axis separation distribution of low-mass binary systems. I
highlight the classical papers of Peter Bodenheimer towards the solution of both problems, based on the rota-
tional hierarchical fragmentation of a collapsing gas cloud. Modern modifications thereof involving supersonic
turbulent fragmentation are also described.
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1. PERSONAL INTRODUCTION

I first met Peter Bodenheimer at the Max-
Planck-Institut für Physik und Astrophysik in Mu-
nich/Freimann in 1978, in the second year of my
PhD. Peter had a huge influence on my research in
star formation and my first models of the stellar Ini-
tial Mass Function (IMF), the topic of my thesis.
In particular, Peter’s 1978 ApJ paper on the evo-
lution/fragmentation of rotating interstellar clouds
left a lasting impact. In this paper, Peter described
a scenario of hierarchical fragmentation of a collaps-
ing massive gas cloud into successively smaller pieces
based on the transfer of spin angular momentum into
orbital motion at each fragmentation stage (“ring
cascade”). The initial conditions in the cloud led to
final fragments which in many cases had the masses
and angular momenta appropriate to observed main-
sequence binary and multiple systems. Thus, in this
classic paper Peter tried to kill two birds with one
stone, solving both the mass and angular momentum
problem in star formation together!

When Peter gave me a preprint of his paper and
discussed it with me, I quickly realized how to gen-
eralize his fragmentation scheme into a theoretical
model of the IMF by allowing his fixed branching ra-
tios of mass and angular momentum (10 %) to take
on more random values (5 – 40 %) at each step; see
Fig. 1 & 2. This simple change then led to a Monte

1Astrophysikalisches Institut, Potsdam, Germany.

Carlo model of the origin of the observed log-normal
IMF (Miller and Scalo 1979) which at the same time
had the potential of explaining the frequency dis-
tribution of orbital angular momenta or semi-major
axes of the resulting binary systems (Abt and Levy
1976). Indeed, the explicit formulation of that idea
became one of the pillars of my PhD thesis submitted
in 1981. The corresponding paper “A statistical the-
ory of the log-normal IMF” was finally published in
Monthly Notices a few years later (Zinnecker 1984).

2. IMF AND CENTRAL LIMIT THEOREM

A similar Monte Carlo model of the log-normal
IMF was also proposed by Elmegreen and Math-
ieu (1983) without resorting to a specific physical
picture of fragmentation process, but refining Lar-
son’s (1973) original crude probabilistic (analytical)
scheme of hierarchical fragmentation. Both, the Zin-
necker (1981, 1984) and the Elmegreen and Mathieu
(1983) Monte Carlo simulations of hierarchical frag-
mentation and the IMF had in common the appli-
cation of the central limit theorem where the frag-
ment mass function always converged to a log-normal
shape after only 4 or 5 fragmentation events, regard-
less of the functional form for the distribution of the
stochastic variables.

3. STAR FORMATION AS A RANDOM
MULTIPLICATIVE PROCESS

A random hierarchical process for star formation
is but a special case of a random multiplicative pro-
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78 ZINNECKER

cess which in itself is more general. The latter would
not only include a temporal sequence of fragmenta-
tion steps but would also incorporate simultaneous
influences which represent the initial conditions for
the onset of the fragmentation and condensations
process. Thus, another set of random variables in
the multiplicative process which may affect the for-
mation of a particular stellar mass is the mixture of
initial conditions in the cloud, such as gas density
and gas temperature, specific angular momentum,
strength of turbulence, mass-to-magnetic flux ratio
as well as the geometry of the incipient condensation.
Although some of the initial conditions may not be
statistically independent, we may assume approxi-
mate factorization. In the simplest case, the stel-
lar mass would be given by the thermal Jeans mass,
which factorizes exactly into functions of gas density
and gas temperature. Indeed, for the observed den-
sity range of 103 to 106 cm−3 and temperature range
of 10 to 50 K in molecular clouds, Jeans masses of 0.1
to 100 solar masses are obtained, i.e. exactly the ob-
served range of stellar masses. Probably, however,
things are not that simple, and the mixture of quasi-
independent initial conditions (which enter the ran-
dom multiplicative process) may consist of several
(of order 5) components, including the ones listed
above. If so, the central limit theorem again ap-
plies, and the resulting stellar mass distribution will
be Gaussian in the log of the mass, i.e. log-normal
(Zinnecker 1985, Les Houches).

The story of the log-normal IMF continues: 10
years later, Adams and Fatuzzo (1996) developped
yet another log-normal IMF model, due to the cen-
tral limit theorem, based on a theory of stellar
masses self-regulated by bipolar outflows (the ran-
dom variables being the mass accretion rate and the
accretion timescale). Finally, mention must be made
of the recent simulations of turbulent fragmentation
and the prediction of a log-normal IMF by Padoan
and Nordlund (2002). According to their theory,
multiple shocks due to supersonic turbulent flows
generate a log-normal probability distribution for the
gas density and also for the Jeans mass (assuming
a constant isothermal gas temperature). Whether
bipolar outflows or turbulent flows can solve the an-
gular momentum problem in star formation remains
to be seen (Edwards 1994). Of course, none of these
theories addresses the question of how to solve the
the third problem of star formation, the magnetic
flux problem (only magnetically supercritical cores
can collapse and form stars); cf. Appenzeller 1982,
Shu et al. 2004.

Fig. 1. Schematic illustration of Bodenheimer’s (1978)
ring fragmentation cascade (successive conversion of spin
to orbital angular momentum).

Fig. 2. Random walk in mass vs. specific angular mo-
mentum space (from Zinnecker 1984, based on Boden-
heimer 1978, his Fig. 2).

4. ANGULAR MOMENTUM PROBLEM

In the mid-1990’s, Peter in an article for ARA&A
reviewed the angular momentum problem in star
formation (Bodenheimer 1995). In Table 1 of this
review, characteristic values of angular momenta
per unit mass (specific A.M.) of observed molec-
ular clouds (1023 cm2 s−1, scale 1 pc) and dense
core (1021 cm2 s−1, scale 0.1 pc) were compared
with those of rapidly spinning T Tauri stars (∼ 1018

cm2 s−1) and the orbital motion of typical binary
systems (∼ 1020 cm2 s−1). Obviously, an efficient
mechanism to reduce the specific A.M. during the
molecular cloud fragmentation process is needed. If
specific A.M. were strictly conserved during cloud
collapse, only very wide visual binary systems with
correspondingly large orbital A.M. could form (e.g.
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STELLAR MASS AND ANGULAR MOMENTUM PROBLEM 79

Mouschovias 1977).
One such mechanism is the successive step-by-

step conversion of spin to orbital A.M. in hierarchi-
cal fragmentation (as discussed above). Another is
“magnetic braking” (for a review, see Mouschovias
1991). Magnetic fields threading molecular clouds
can effectively exert a torque on the rotating neutral
gas, as long as the magnetic field is ”frozen” and the
magnetic flux is conserved during contraction. How-
ever, at high enough gas density flux freezing will
break down, due to an insufficient degree of ioniza-
tion in the cloud. Then magnetic braking ceases,
leaving behind dense pre-stellar cloud cores whose
specific spin A.M. still exceeds the orbital A.M. of
most binary stars. Indeed, in a careful study, Simon
et al. (1995, their Fig. 8) compared the distributions
of specific A.M. of rotating dense ammonia cores in
Taurus with a representative sample of pre-Main Se-
quence binary systems in Taurus, noting that there
is some overlap (the spin A.M. of the most slowly ro-
tating cores matches the orbital A.M. of the widest
binary systems). However, it must also be noted
that the average observed spin A.M. of dense cores
is about a factor of 10 higher than the median orbital
A.M. of the T Tauri binaries (see the review of Math-
ieu 1994). Something remains to be explained here!
This was the motivation for a recent paper in which
we tried to relate the separation distribution of the
binary population to the properties of star-forming
cores (Sterzik, Durisen, and Zinnecker 2003).

5. THE SEMI-MAJOR AXIS DISTRIBUTION OF
LOW-MASS BINARY SYSTEMS

To some extent, the problem was already real-
ized by Burkert & Bodenheimer (2001) and Kroupa
& Burkert (2001). The former paper suggested that
the total spin A.M. of dense cores can be overesti-
mated, if the turbulent nature of the velocities inside
the cores are misinterpreted as systematic rotational
motion. The latter paper took a different approach,
investigating whether it is possible to broaden an ini-
tially narrow period or semi-major axis distribution
by stellar dynamical interactions in a very young and
compact cluster, but concluded it does not work un-
der any circumstances. On the other hand, Larson
(1997) had pointed out that it may work if the role
of dynamical friction and gas drag are taken into ac-
count.

Our own paper, cited above, proposes yet another
model for the observed broad log-normal period or
semi-major axis distribution of binary and multiple
G and K-tpye main sequence stars (Duquennoy &
Mayor 1991, Eggenberger et al. 2003). This model

is based on the picture of gravo-turbulent fragmen-
tation (MacLow & Klessen 2004) where gravition-
ally supercritical cores are swept together in conver-
gent supersonic turbulent flows. This means that
the typical outcome of supersonic turbulent com-
pression is a prompt condensation containing sev-
eral thermal Jeans masses (rather than only one or
two), thus leading to small N clusters (N =3,4,5, ...)
as envisaged in the work of Clarke, Pringle, and
collaborators. We note that the number of ther-
mal Jeans masses is given by N = 1/(2αo) where
αo = Ethermal/Egrav is the initial ratio of ther-
mal to gravitational energy at the onset of collapse.
Now, starting from initial conditions with a number
of Jeans masses (αo ∼ 0.1) implies a rapid nearly
pressure-free collapse (free-fall time of the order of
1000 years), stopped only by rapid rotation (cen-
trifugal barrier) at high gas densities (of the order of
100,000 times the prompt initial gas density, but still
in the isothermal regime). As Tohline (2002) has re-
minded us, in such a situation density perturbations
can grow on a quasi-stationary background and sev-
eral objects are likely to form, with separations of
the order of the centrifugal radius Rc = βoRo, where
Ro is the initial radius of the collapsing configuration
and βo = Peter = Erot/Egrav is the ratio of rota-
tional to gravitational energy of the initial turbulent
fragment (typically βo = 0.02, corresponding to a
centrifugal shrink factor of 50 and a mean density
increase of 503 = 125, 000).

While Rc is still a factor of 10 too large compared
to the peak (40 AU) of the log-normal binary sepa-
ration distribution, chaotic N-body interactions will
lead to a final binary system or hierarchical triple
with typical binary component separations decreas-
ing by the required factor of 10 w.r.t. the initial size
of the small N system, as numerical simulations con-
firm. This is due to dynamical hardening connected
to the ejection of the odd member of the initial mul-
tiple system (cf. Reipurth & Clarke 2001). We
then postulate that the occurrence of a wide range
of binary separations results from the chaotic gravi-
tational interactions in young multiple systems (see
Fig. 3). The widest binaries form from N= 2 initial
conditions, as there is no way to harden these bina-
ries. N =1 conditions may occur too (rarely), but
most single stars should be the ejecta from a few-
body system at birth.

How to make very close (spectroscopic) binaries?
This is a long-standing unsolved problem (e.g. Math-
ieu 1994). Fission of rapidly rotating protostars is
unlikely (Tohline & Durisen 2001), but disk fragmen-
tation of the second collapsing embryonic core trig-
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80 ZINNECKER

Fig. 3. Evolutionary stages from dense molecular cloud
cores produced by prompt turbulent fragmentation to-
wards final binary and multiple stellar systems. Typical
system scales are indicated (from Sterzik et al. 2003).

gered by molecular hydrogen dissociation may work
(Bonnell 2001). In our model (Sterzik et al. 2003),
the key process is the Kozai mechanism. Kozai
(1962) found that the gravitational interaction of a
third body in polar hierarchical orbit around a nor-
mal wide binary drives the eccentricity of that binary
towards unity, which causes tidal dissipation of or-
bital energy and orbital A.M. at peri-astron, thus
a secular circularization of the orbit and a dramatic
reduction of the orbital period (Kiseleva et al. 1998).

Let me finish this discussion about binary star
formation and component separations by returning
to the central limit theorem. It is possible that the
stochastic distribution of the initial collapse param-
eters αo and βo (first introduced by Black & Boden-
heimer 1976 and Larson 1978) are wide enough to
account for the fragmentation into a wide variety of
binary and multiple systems; the broad log-normal
semi-major axis distribution may thus be yet another
manifestation of the powerful central limit theorem.

I thank Peter Bodenheimer for his inspiration
and friendship over the years and wish him all the
best for the future.

I also thank Harold Yorke for the ride from
Pasadena to Ensenada, and the organisers (GGS &
GTT) for inviting me to Peter Bodenheimer’s scien-
tific birthday party.

Finally I thank Michael Sterzik and Dick Durisen
for their collaboration.

REFERENCES

Abt, H. A. & Levy, S. G. 1976, ApJS, 30, 273
Adams, F. C. & Fatuzzo, M. 1996, ApJ, 464, 256
Appenzeller, I. 1982, Fund.Cosm.Phys., 7, 313
Black, D. C. & Bodenheimer, P. 1976, ApJ, 206, 138
Bodenheimer, P. 1978, ApJ, 224, 488
Bodenheimer, P. 1995, ARA&A, 33, 199
Bonnell, I. A. 2001, The Formation of Close Binary

Stars. In: The Formation of Binary Stars, Proceedings
of IAU Symp. 200. eds. H. Zinnecker & R. D. Math-
ieu, p. 23

Burkert, A. & Bodenheimer, P. 2001, Turbulence and

Cloud Angular Momentum. In: The Formation of
Binary Stars, Proceedings of IAU Symp. 200. eds.
H. Zinnecker & R. D. Mathieu, p. 122

Duquennoy, A. & Mayor, M. 1991, A&A, 248, 485
Edwards, S. 1994, RevMexAA, 29, 35
Eggenberger, A., Halbwachs, J. L., Udry, S., & Mayor, M.

2003, RevMexAA(SC), IAU Coll. 191 Merida (eds.
C. Allen & C. Scarfe)

Elmegreen, B. G. & Mathieu, R. D. 1983, MNRAS, 203,
305

Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MN-
RAS, 300, 292

Kozai, Y. 1962, AJ, 67, 591
Kroupa, P. & Burkert, A. 2001, ApJ, 555, 945
Larson, R. B. 1973, MNRAS, 161, 133
Larson, R. B. 1978, MNRAS, 184, 69
Larson, R. B. 1997 In: Structure and evolution of stel-

lar systems. eds. T. A. Agekian, A. A. Mullari, &
V. V. Orlov, St. Petersburg State University

Mac Low, M.-M. & Klessen, R. S. 2004, RvMP, 76, 125
Mathieu, R. D. 1994, ARA&A, 32, 465
Miller, G. E. & Scalo, J. M. 1979, ApJS, 41, 513
Mouschovias, T. Ch. 1977, ApJ, 211, 147
Mouschovias, T. Ch. 1991, Cosmic Magnetism and the

Basic Physics of the Early Stages of Star Forma-

tion. In: The Physics of Star Formation and Early
Stellar Evolution. NATO Advanced Science Institutes
(ASI) Series C, Vol. 342, Dordrecht, Kluwer, eds.
Ch. J. Lada & N. D. Kylafis., p.104

Padoan, P. & Nordlund, A. 2002, ApJ, 576, 870
Reipurth, B. & Clarke, C. 2001, AJ, 122, 432
Shu, F. H., Li, Z.-Y., & Allen, A. 2004, ApJ, 601, 930
Simon, M., Ghez, A. M., Leinert, Ch. et al. 1995, ApJ,

443, 625
Sterzik, M. F., Durisen, R. H., & Zinnecker, H. 2003,

A&A, 411, 91
Tohline, J. E. 2002, ARA&A, 40, 349
Tohline, J. E. & Durisen, R. H. 2001, An Update on Bi-

nary Formation by Rotational Fission. In: The For-
mation of Binary Stars, Proceedings of IAU Symp.
200. eds. H. Zinnecker & R. D. Mathieu, p. 40

Zinnecker, H. 1985, Star formation as a random multi-

plicative process. In: Birth and Infancy of Stars, Les
Houches, Session XLI, 1983. eds. R. Lucas, A. Omont,
& R. Stora, Elsevier Science Publishers B.V., p. 473

Zinnecker, H. 1984, MNRAS, 210, 43


