STRÖMGREN PHOTOMETRY AND HIGH RESOLUTION SPECTROSCOPY OF VERY METAL-POOR STARS

W. J. Schuster,1 R. Michel,1 and T. C. Beers2

Strömgren photometry plus photometric indices from the HK survey allow us to select potentially interesting stars with probable anomalous chemical abundance ratios. Being stars of very low metal abundances, high-resolution spectroscopy can provide very important clues concerning the chemical enrichment processes of the early Galaxy.

uvby–β photometry of nearly 500 very-metal-poor (VMP) stars has been observed at the San Pedro Mártir (SPM), México, and La Silla (LS), Chile, observatories using 1.5 m telescopes, with photoelectric techniques being used at SPM, and both photoelectric and CCD techniques at LS. The resulting photometry has been published in Schuster et al. (1996; S96) and Schuster et al. (2004a; S04a), along with interstellar reddenings, metallicities, photometric classifications, distances, and relative ages. Indices and calibrations from the HK survey (Beers et al. 1992), the intrinsic-color calibration of Schuster & Nissen (1989), and reddening maps from Schlegel et al. (1998), have also been used in these analyses.

Index diagrams from the uvby and HK-survey photometries allow us to pick out stars with probable abundance anomalies for future studies with high-resolution spectroscopy. AGB-star candidates can be identified in the c0, (b–y)0 diagram, probable Am stars in the [c1],[m1], and CH stars in the GP,KP diagram, where GP and KP measure the strengths of the CH G-band and the CaII K line, respectively. Other combinations of photometric data may point to other potentially interesting groups. For example, some metal-poor stars classified as subgiants in the c0,(b–y)0 diagram show unusually large values of [m1] and m1, evidence of photometric variability, and/or discordant values of (b–y)0 and (B–V)0; these may in fact be misclassified (variable) AGB stars with unusual chemical abundance ratios and/or binary companions.

1Observatorio Astronómico Nacional, UNAM, Apartado Postal 877, Ensenada, B.C., México, C.P. 22800 (schuster, rmm@astrosen.unam.mx).
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA (beers@pa.msu.edu).
larger than would be expected for VMP stars with [Fe/H] < -1.5; see Table 1. Most of these have been classified subgiants in the c0, (b-y)0 diagram. Some show clear evidence of photometric variability; in Table 1 the first V value for each star comes from the uvwby photometry, and the second from the HK survey. These are perhaps analogous to stars discussed in S96 with larger than expected [m1] values. These may be misclassified AGB stars with unusual chemical-abundance ratios, variability, and/or binary companions; the c0 index may be shifted by NH, CH, and CN bands, as discussed in S04a.

2. A second group of anomalous stars are ten classified blue stragglers having m1, [m1], and (U-B)0 values indicating nearly solar [Fe/H]. There is a clear discrepancy here between these photometric indices and the KP index used to derive [Fe/H] for the HK survey. These stars are very similar to the Am stars identified by Wilhelm et al. (1999) and have been classified in S04a as “BS (Am)”. In Fig 1 these stars are shown in the [c1], [m1] diagram compared to other VMP stars and to high-velocity (HV) stars from several sources; these “Am” stars are clearly separate from other VMP stars.

3. Another potentially interesting group includes the RHB–AGB candidates, classified in the c0, (b-y)0 diagram. The AGB stars frequently show abundance anomalies, such as over-abundances for carbon, the α-elements, and especially the s-process elements, and so very-metal-poor AGBs can provide useful information about the early chemical evolution of the Galaxy. Twenty-one RHB–AGB candidates are found in Table 5 of S04a.

4. CH-star candidates can be identified in the GP,KP diagram, and twenty-two such candidates are identified in Table 3 of S04a. These too probably have anomalously high carbon abundances and may provide useful information concerning the 3rd dredge-up and mass transfer in evolved binary systems.

5. The SL–BHB and SL groupings probably contain stars such as the EHB stars of globular clusters, the B subdwarfs of the field, and the “flash mixed” stars of Brown et al. (2001). These latter stars should be especially interesting to study spectroscopically due to the possible enhanced abundances of elements from the stellar interior, such as carbon and helium; two stars, 22169–002 and 22948–027, have been classified both “SL” and “CH” in S04a.

6. Most of the stars in the above groups have V ≥ 12th and so require large telescopes (≥ 6 m) for the high-resolution, high-S/N spectroscopy (R ≥ 30,000 and S/N ≥ 150) required to study well their chemical abundance ratios.

REFERENCES

Schuster, W. J., Moitinho, A., Márquez, A., Parraro, L., & Covarrubias, E., 2004b, in process (S04b)