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ARTIFICIAL SATELLITE THEORY: CONTRIBUTION OF THE

TESSERAL HARMONIC COEFFICIENTS

J. F. Palacián1

RESUMEN

En el marco de la teoŕıa del satélite artificial, se presenta aqúı el estudio del caso de un satélite artificial
moviéndose alrededor de un planeta similar a la Tierra. La fuerza de perturbación considerada es la debida a
la inhomogeneidad del potencial gravitacional del planeta. El análisis que se presenta es puramente anaĺıtico
y considera el truncamiento de las ecuaciones Hamiltonianas a partir del segundo orden, es decir, la influencia
de los armónicos zonales y teserales hasta segundo orden. El sistema se formula como un Hamiltoniano con
tres grados de libertad. Por medio de tres transformaciones de Lie sucesivas y sin hacer uso de expansiones
de Taylor para la excentricidad ni de series de Fourier para las anomaĺıas, el sistema se normaliza hasta orden
cinco en un pequeño parámetro. El Hamiltoniano resultante define un sistema de un grado de libertad, que
puede ser expresado en el espacio de fases en términos de una colección de variables que tienen en cuenta todas
las simetŕıas del problema. El análisis de este sistema da como resultado la obtención de cuatro regiones de
equilibrio relativo y dos tipos de bifurcaciones. La comparación de este problema reducido con el sistema original
nos muestra la existencia de varias familias de toroides invariantes, trayectorias periódicas y cuasiperiódicas
con el mismo tipo de bifurcaciones.

ABSTRACT

In the context of artificial satellite theory, we study the case of an artificial satellite around an Earth-like planet.
The perturbation force taken into account is produced by the gravity attraction of the planet, and in particular,
it is caused by its inhomogenous potential. Our analysis is purely analytical and we begin by truncating the
Hamiltonian equations at second order, that is, considering the influence of the zonal and the tesseral harmonics
to order two. The system is formulated as a Hamiltonian with three degrees of freedom. Then, by means of
three successive Lie transforms, we normalise the system to order five in a small parameter. We do not use
Taylor expansions of the eccentricity nor Fourier series in the anomalies. After these transformations are
performed, the truncated and reduced Hamiltonian defines a system of one degree of freedom which can be
written in terms of a collection of variables in a phase space which takes into account all of the symmetries of the
problem. Next, an analysis of the system is performed, obtaining up to four relative equilibria and two types of
bifurcations. The connection with the original system establishes the existence of various families of invariant
tori, quasiperiodic and periodic trajectories with the same type of bifurcations as the reduced problem.

Key Words: CELESTIAL MECHANICS — PLANETS AND SATELLITES: GENERAL

1. SCOPE

The gravity field of a planet is the biggest per-
turbation that affects a satellite. In general, analyt-
ical theories are employed to provide fast and accu-
rate calculation of ephemeris, although for a satellite
orbiting at low altitude these theories are normally
used to study the time variation of some tesseral co-
efficients of the gravity field. This paper deals with
the influence of the tesserals in the motion of a satel-
lite orbiting an Earth-like planet at low altitude.

The tesseral problem has been studied by various
authors since Kaula (1966). In most of the works,
the entire perturbing potential, that is, including the
zonals and tesserals coefficients, is placed at first

1Universidad Pública de Navarra, Pamplona, Spain.

order of perturbation, applying thereafter canoni-
cal transformations with the aim of eliminating the
mean anomaly at first order of perturbation (Métris
et al. 1993). These approaches are usually done in
a phase space free of resonances.

Our treatment is based on a scaling of the Hamil-
tonian, so that we take into account the relative val-
ues of the coefficients involved in the process. In
particular, we assume that the oblateness coefficient,
i.e., the zonal term C2,0, is much bigger than the rest
of terms as is the case for the Earth. Thus, we are
able to remove both short and long period terms
from the equations of motion applying Lie trans-
forms (Deprit 1969). We choose the small parameter
as the quotient between the angular velocity of the
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planet and the mean motion of the satellite and ar-
range the initial Hamiltonian in a convenient way to
perform the transformations.

Once the Hamiltonian is simplified, we use re-
duction techniques to express it in an adequate set
of coordinates and its appropriate phase space where
the flow may be discussed. In this way, we enlarge
the work of Cushman (1983, 1984) and Coffey et
al. (1986) for the zonal problem, finding the relative
equilibria of the reduced Hamiltonian, and analysing
its (non-linear) stability and bifurcations. In this
article, we present the main features of our theory
while the pertinent details will appear in the near
future (Palacián 2005).

2. HAMILTONIAN OF THE PROBLEM

We choose two sets of variables well suited to
perform the normalisation of our original Hamilto-
nian, the so-called polar-nodal and Delaunay vari-
ables. For an explanation of both sets of canonical
variables, see Deprit (1981). We start by fixing an
inertial frame, say 0x y z, centered at the centre of
mass of the planet. Polar-nodal variables belong to
the set (r, ϑ, ν,R,Θ, N), where Θ is the modulus of
the angular momentum vector, G, and its conjugate
angle is the argument of the latitude ϑ ∈ [0, 2π).
The co-ordinate r is the distance from the centre of
the planet to the satellite and its conjugate momen-
tum R denotes the radial velocity. The argument
of the node ν is the angle conjugate to the action
N , which represents the projection of G onto the
z–axis. The inclination of the instantaneous orbital
plane with respect to the x y–plane (the so-called
equatorial plane) is given by the angle 0 < I < π
such that N = Θ cos (I). We define c = cos (I) and
s = sin (I).

On the other hand, Delaunay variables
(`, g, h, L,G,H) represent a set of action-angle
variables, see (Deprit 1981,1982) for details. The
action L is related with the semimajor axis of
the orbit by the identity L2 = µa where the
gravitational constant is µ. Thence, if H0 stands
for the Hamiltonian of the two-body problem,
H0 = −µ2/(2L2). The action G is equal to Θ,
whereas H ≡ N . The angle ` stands for the mean
anomaly. The angle g is the argument of pericentre
and h ≡ ν. The eccentricity of the trajectory is
designated by e, and in terms of Delaunay actions,
it is expressed as e = (1 − G2/L2)1/2.

If the planet is assumed to rotate with a uniform
angular speed ω one can choose a three-dimensional
reference frame attached to the planet in a way that
its z′ component corresponds to the axis of rotation.

Next, the Hamiltonian of the problem can be writ-
ten as the sum H = T − ω N + V, where T and V
represent, respectively, the kinetic and the potential
energies. In particular V reads as

V = −
µ

r

[

1 +
(

α

r

)2

V2 +
(

α

r

)3

V3 +
(

α

r

)4

V4 + . . .

]

,

where α stands for the mean equator of the planet.
If we drop the coefficients of order higher than two,
the remaining one reduces to

V2 = 1

2
( 3

2
s2 − 1) C20

−
3

4
s2 C20 cos 2ϑ

−
3

4
(c − 1)s (S21 cos(ν − 2ϑ) − C21 sin(ν − 2ϑ))

+ 3

2
cs (S21 cos ν − C21 sin ν)

−
3

4
(c + 1)s (S21 cos(ν + 2ϑ) − C21 sin(ν + 2ϑ))

+ 3

4
(c − 1)2 (C22 cos(2ν − 2ϑ) + S22 sin(2ν − 2ϑ))

+ 3

2
s2 (C22 cos 2ν + S22 sin 2ν)

+ 3

4
(c + 1)2 (C22 cos(2ν + 2ϑ) + S22 sin(2ν + 2ϑ)) .

The goal of the following paragraphs is to nor-
malise and reduce the (autonomous) three-degree-
of-freedom system defined by H into a new system
of one degree of freedom.

3. NORMALISATIONS AND REDUCTIONS

We need to pass from H to a new Hamiltonian K
using Lie transforms. We make

H = H0 + H1 +
1

2
H2 +

1

6
H3

where H0 corresponds to the Hamiltonian of the two-
body problem, H1 = −ω N , H2 contains the terms
factored by C20 and H3 have the terms related to the
tesseral coefficients. Higher-order terms are taken
equal to zero. By doing so, the small parameter of
the problem is considered to be the size of ω/n.

Next, we identify K0 ≡ H0 and apply three Lie
transforms to obtain:

K = K0 + K1 +
1

2
K2 +

1

6
K3 +

1

24
K4 +

1

120
K5.

The mean anomaly is removed through two suc-
cessive Lie transforms: (i) following Deprit (1981),
we apply the elimination of the parallax to allevi-
ate the number of terms in the resulting Hamilto-
nian; then, (ii) next ` is eliminated through a De-

launay normalisation (Deprit 1982). Both transfor-
mations are in closed form. Moreover, the removal
of `, avoiding Taylor and Fourier expansions has
been possible thanks to the introduction in the gen-
erating function of the Delaunay normalisation of
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34 PALACIÁN

the polylogarithmic function, Lin(z) =
∑∞

k=1 zk/kn,
and some other combinations involving logarithmic
and polylogarithmic terms (Osácar & Palacián 1994;
Palacián 2002). Finally, the argument of the node is
eliminated via a standard average. After truncating
higher-order terms, the resulting Hamiltonian is in-
dependent of ` and h and so L and H are integrals
of motion for it. Thus, K defines a system of one
degree of freedom. The reason for pushing the cal-
culations to fifth order is that we need K5 to capture
the influence of C2,1, C2,2, S2,1 and S2,2.

Now, we simplify K further. In fact, the discrete
symmetries of H are inherited by K:

R1 : (x, y, z, Px, Py, Pz) → (x,−y,−z,−Px, Py, Pz),

R2 : (x, y, z, Px, Py, Pz) → (x,−y, z,−Px, Py,−Pz).

Thus, one can define a couple of variables, σ1 and
σ2, to reflect this symmetry. The relationship among
the Delaunay and the new variables is as follows:
G = σ2. On the other hand, cos g is given by:

±

√

L2 H2−4 σ1 σ2

2
+4 σ4

2
−2 L |H| (σ1+2 σ2

2
)

5 L2 H2−4 (L2+H2) σ2

2
+4 σ4

2
−2 L |H| (L2+H2−2 σ2

2
)

whereas sin g yields:

±

√

4 L2 H2−4 (L2+H2−σ1) σ2

2
−2 L |H| (L2+H2−σ1−4 σ2

2
)

5 L2 H2−4 (L2+H2) σ2

2
+4 σ4

2
−2 L |H| (L2+H2−2 σ2

2
)

.

In this way, K is expressed in terms of σ1 and
σ2, resulting in K̄. Then, this (averaged and fully-
reduced) Hamiltonian is defined on the so-called
fully-reduced phase spaces. For |H| > 0, the space
UL,H is given by:

UL,H =
{

(σ1, σ2) ∈ R
2 | |H| ≤ σ2 ≤ L,

(σ2

2
−L |H|)2

σ2

2

≤ σ1 ≤ (L − |H|)2
}

,

whereas for H = 0, the space UL,0 is given through:

UL,0 = {(σ1, σ2) ∈ R
2 | σ2

2 ≤ σ1 ≤ L2, 0 ≤ σ2 ≤ L}.

4. ANALYSIS OF THE REDUCED SYSTEM

The flow defined by K̄ is analysed in UL,H and
UL,0. First, we concluded that circular and equato-
rial type of orbits are always relative equilibria. The
rest of equilibria depend on five bifurcation curves.
The lines Γ1,Γ2,Γ3 and Γ4 are pitchfork bifurca-
tions, whereas Γ5 is a special bifurcation due to the
change of phase space (see Fig.1).

The main features of the analysis of K̄ are as fol-
lows: (i) An equilibrium on UL,H , whose linearisa-
tion has no null eigenvalue is in correspondence with

Fig. 1. Bifurcation diagram with the number of relative
equilibria encircled in each region. Dot lines correspond
to the critical inclination value for the zonal problem.

one or two families of two-dimensional invariant tori
in R

6 (parameterised by L and H). These families
share the same type of stability. (ii) Explicit for-
mulae of the approximations of the two-dimensional
invariant tori, quasiperiodic and periodic orbits are
computed using the direct change of the Lie trans-
forms. (iii) The analysis is valid for satellites orbit-
ing the planet at low altitude (ω � n). (iv) The
inclusion of the tesseral coefficients modifies slightly
the equations of the curves Γ1, . . . ,Γ4 of the zonal
problem.
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noloǵıa (Spain), # ACPI2002/04 of Departamento
de Educación y Cultura, Gobierno de La Rioja
(Spain), # API02/20 of Universidad de La Rioja
(Spain) and by Vicerrectorado de Investigación de
la Universidad Pública de Navarra (Spain).

REFERENCES

Coffey, S., Deprit, A., & Miller, B. R. 1986, Celest. Mech.,

36, 365

Cushman, R. 1983, Celest. Mech., 31, 409; errata: 1984,

33, 297

Deprit, A. 1969, Celest. Mech., 1, 12

. 1981, Celest. Mech., 24, 111

. 1982, Celest. Mech., 26, 9

Kaula, W. T. 1966, Theory of Satellite Geodesy, (Blais-

dell: Waltham)

Métris, G., Exertier, P., Bourdon, Y. & Barlier, F. 1993,

Celest. Mech. Dyn. Astron., 57, 175
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