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RESUMEN

Presentamos resultados recientes de simulaciones numéricas de flujos magnetizados sobre agujeros negros, en
el contexto del modelo de colapsares para destellos de rayos gama. Después de un episodio transitorio, el flujo
se relaja a una configuración con distintas componentes, bien definidas y variables en el tiempo. Estas incluyen
un toro de acreción con una estructura coronal y un flujo hacia el exterior, aśı como un embudo polar con flujos
tanto hacia radios más pequeños como más grandes. Nos enfocamos en la naturaleza de estas estructuras, aśı
como en posibles conexiones entre ellas. Los efectos de la rotación y la magneto hidrodinámica lanzan, aceleran
y coliman estos flujos. También vemos como un flujo hacia el exterior se puede formar aún cuando la envolvente
que colapsa tenga un campo magnético inicialmente muy débil. Nuestra conclusión más importante es que aún
para casos con rotación lenta y campos magnéticos poco intensos, el colapso gravitacional de una envolvente
estelar puede producir un chorro muy rápido y muy intenso.

ABSTRACT

We present our recent results from numerical simulations of a magnetized flow in the vicinity of a black hole
in the context of the collapsar model for GRBs. The simulations show that after an initial transient, the flow
settles into a complex convolution of several distinct, time-dependent flow components including an accretion
torus, its corona and outflow, an inflow and an outflow in the polar funnel. We focus on studying the nature
and connection between these components, in particular between the inflows and related outflows. We find
that rotational and MHD effects launch, accelerate, and sustain the outflows. We also find that an outflow can
be formed even when the collapsing envelope has initially a very weak magnetic field and a very small angular
momentum. Our main conclusion is that even for a relatively weak initial magnetic field and a slow rotation,
a gravitational collapse of a stellar envelope can lead to formation of a very strong and very fast jet.

Key Words: ACCRETION, ACCRETION DISKS — GAMMA RAYS: BURSTS — METHODS: NU-

MERICAL — MHD — STARS: WINDS, OUTFLOWS

1. INTRODUCTION

Gamma-ray burts (GRBs) are associated with
the huge release of energy in a matter of seconds.
The collapsar model is one of most promising sce-
narios to explain this and other properties of long-
duration GRBs (Woosley 1993; Paczyński 1998;
MacFadyen & Woosley 1999; Popham, Woosley, &
Fryer 1999; MacFadyen, Woosley, & Heger 2001;
Proga et al. 2003). In this scenario, the collapsed
iron core of a massive star accretes gas at a high rate
(∼ 1 M� s−1) producing a large neutrino flux, a pow-
erful outflow, and consequently a burst of gamma-
rays. Many breakthroughs were made in studying
GRBs. For example, the association of long du-
ration GRBs with stellar collapse was firmly con-
firmed (Hjorth et al. 2003; Stanek et al. 2003).

1Department of Physics, University of Nevada, Las Vegas,

USA.

However, several important questions still need to be
answered. For example, what mechanism or mecha-
nisms produce a powerful outflow? What force ac-
celerates the outflow to ultra-relativistic velocities?
What is the content of the outflow? How is the out-
flow energy converted to the radiation?

One could be quite surprised that after many
years of studying, we do not know answers to such
basic questions. But it should be emphasized that
the physical conditions and geometry in the central
engine and outflow are extreme and complex (e.g.,
gravitational and magnetic fields are very strong; the
temperature and the mass and energy densities are
very high; large scale supersonic/relativistic flows
and small scale turbulent flows are physically con-
nected). To study such a complex system, analytic
models need to be supplemented by sophisticated,
multi-dimensional time-dependent numerical simu-
lations.
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To understand how the extraordinary amount of
energy characteristic of GRBs can be extracted, we
need to study properties of accretion disks because
the released energy will ultimately come from the
accretion of disk material or from the rotational en-
ergy of a accreting object. One possibility is that the
disk energy is extracted by a magnetic field ampli-
fied by differential rotation up to very large values
(B >

∼ 1015 G). A magnetically driven wind could
then be emitted from the disk, with a fraction of the
Poynting flux being eventually transferred to mat-
ter (Blandford & Payne 1982). Vlahakis, Peng, &
Königl (2003) have applied this mechanism to GRBs
using a semianalytic approach in the special relativ-
ity limit. In a different version of this idea, an early
conversion of magnetic energy into thermal energy
could occur through the reconnection of field lines
above the plane of the disk in a region of rather low
density (Narayan et al. 1992).

Magnetic extraction of the disk energy is very at-
tractive because magnetic fields are very likely cru-
cial for the existence of all accretion disks. The mag-
netorotational instability (MRI) (Balbus & Haw-
ley 1991; and earlier by Velikov 1959, and Chan-
drasekhar 1960) has been shown to be a very robust
and universal mechanism to produce turbulence and
the transport of angular momentum in disks at all
radii (Balbus & Hawley 1998). It is therefore likely
that magnetic fields control mass accretion inside the
disk and play a key role in driving a disk outflow.

An alternative to accretion is to directly extract
the rotational energy of from a black hole (BH) via
the Blandford-Znajek effect (Blandford & Znajek
1977, hereafter the B-Z effect). The available en-
ergy then depends on the rotational parameter, a of
the BH and on the intensity of the magnetic field
pervading the event horizon. If B <

∼ 1015 G and
a ∼ 1, then the power available from the B-Z effect
can be > 1052 erg s−1, with very limited contamina-
tion by baryons at the source because the field lines
that guide the outflow are anchored to the BH.

Effects of magnetic fields in the context of GRBs
have been studied by a few groups (e.g., Mizuno et
al. 2004a; Mizuno, et al. 2004b; De Villiers, Staff,
& Ouyed 2005). The main focus of these studies
is on 2- and 3-dimensional general relativistic mag-
netohydrodynamic (GR MHD) simulations of jets
launched self-consistently from accretion disks orbit-
ing Schwarzschild or Kerr black holes. The main
results from GR MHD simulations are: the accre-
tion flow can launch energetic jets in the polar fun-
nel region of the disk system; the flow can also pro-
duce a substantial coronal wind; the jet material can

be accelerated to ultra-relativistic velocities by the
Lorentz force in the polar funnel; the overall ener-
getics of the jets are strongly dependent on the BH
spin with, with high-spin black holes producing the
highest energy and mass fluxes. Thus these are very
important studies as they capture a few of the key
elements of the central engine and soon may include
more elements such as sophisticated equation of state
and neutrino physics.

Here, we present and discuss results from 2.5-
dimensional, magnetohydrodynamic (MHD) simula-
tions of the collapsar model using pseudo-Newtonian
potential. These simulations (see also Proga et al.
2003) are an extension of the work of Proga & Begel-
man (2003, hereafter PB03) who studied MHD ac-
cretion flows onto a black hole (BH). In particu-
lar, the collapsar simulations presented here include
a realistic equation of state, photodisintegration of
bound nuclei and cooling due to neutrino emission.
These simulations are also an extension of collap-
sar simulations by MacFadyen & Woosley (1999), as
they include very similar neutrino physics and initial
conditions but are in the MHD instead hydrodynam-
ical (HD) limit.

As we mentioned above, there have been 2- and
3-dimensional simulations of jets in the MHD and
GR MHD limit. However, these studies were mostly
for strongly rotating accretion flows set to be initially
pressure/rotation supported torii. We focus here on
simulations that attempt to mimic the conditions ap-
propriate for presupernova stars, i.e., at large radii,
the density distribution is spherically symmetric, an-
gular momentum is small and latitude-dependent an-
gular momentum, and the magnetic field is weak.
The evolution of such MHD flows is not well explored
and therefore it is worth to consider first the axisym-
metric case before moving into fully 3-dimensional
simulations. Based on previous theoretical work, one
can anticipate the MHD accretion flow will launch a
jet. But the main issue we address here is whether
the jet, produced inside a collapsing star, can be
strong enough to overcome supersonically infalling
gas in the polar funnel and escape the star. The sim-
ulations performed by MacFadyen & Woosley (1999)
showed that this can not happen in the HD limit.
We also consider a question whether a rotationally
supported torus or disk are necessary to produce an
outflow.

2. MODELS

Proga et al.’s simulation begins after the 1.7 M�

iron core of a 25 M� presupernova star has collapsed
and follows the ensuing accretion of the 7 M� helium
envelope onto the central black hole formed by the
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MHD COLLAPSAR MODEL 49

Fig. 1. Sequence of logarithmic density (top) and toroidal magnetic field maps (bottom) overplotted with the direction
of the poloidal velocity from run A at times 0.153, 0.161, 0.165, and 0.173 s. The sequence illustrates the early phase
of the formation of a rotational supported accretion torus and and of a magnetically driven outflow. The length scale
is in units of the BH radius (i.e., r′ = r/RS and z′ = z/RS).

collapsed iron core. A spherically symmetric progen-
itor model is assumed, but the symmetry is broken
by the introduction of a small, latitude-dependent
angular momentum and a weak split-monopole mag-
netic field. For more details, see Proga et al. (2003).
We refer to the model presented in Proga et al.
(2003) as run A. We will also present results from
model B which is a rerun of model A with the nu-
merical resolution increased by a factor of 2 in the
latitudinal direction (see Section 3.2). Run B has
also a higher resolution in the radial direction com-
pared to run A; the resolution increase is a function
of radius and is of a factor of 19 at the smallest radii
and of a factor of 1.015 at the largest radii. Run
B differs also from run A in the way we set up the
initial conditions. However, despite these differences
the gross properties of the solution during the later

phase of the evolution are very similar for both runs.
The details of run B are in Proga (2006).

3. RESULTS

3.1. Fiducial run

Figure 1 shows time sequence of logarithmic den-
sity (top) and toroidal magnetic field maps (bottom)
overplotted with the direction of the poloidal velocity
from run A during the early phase of the evolution.
The figure illustrates how after a transient episode
of infall, lasting about 0.13 s, the gas with l ≈ 2RSc
starts to pile up outside the black hole and to form
a thick torus bounded by a centrifugal barrier near
the rotation axis. Soon after the torus forms (i.e.,
within a couple of orbital times at the inner edge),
the magnetic field is amplified by shear and the mag-
netorotational instability (MRI, e.g., Balbus & Hal-
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50 PROGA

Fig. 2. The time evolution of the mass accretion rate (top left panel), total magnetic energy due to each of the three
field components (top right panel), neutrino luminosity (bottom left panel) and area-integrated radial Poynting and
kinetic flux in the polar outflow at r = 190 RS (bottom right panel) for run A. Formally, we define the polar outflow as
the region where vr > 0 and β < 1. Note the difference in the time range in the panel with the radial fluxes.

wey 1991). We note that the third possible mecha-
nism to increase the magnetic field, compression is
negligible here because the initial field as well as the
infalling gas are radial (e.g., see the top right panel
in Figure 2). The fast growth of the magnetic fields
is exemplified by the growth of the toroidal field as
shown in the bottom row of panels in Figure 1. We
have verified that most of the inner torus is unsta-
ble to MRI, and that our simulations have enough
resolution to resolve, albeit marginally, the fastest
growing MRI mode (see also Section 3.2 for the pre-
sentation of the results from run B).

The magnetic field effects drive the time evolu-
tion of the torus including the mass accretion onto
a BH. Another important effect of magnetic fields is
that the torus produces a magnetized corona and an
outflow (e.g., the middle panels in Figure 1). The
presence of the corona and outflow is essential to
the evolution of the inner flow at all times and the
entire flow close to the rotational axis during the lat-
ter phase of the evolution. The outflow very quickly
becomes sufficiently strong to overcome supersoni-
cally infalling gas (the radial Mach number in the
polar funnel near the inner radius is ∼ 5) and makes
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MHD COLLAPSAR MODEL 51

its way outward, reaching the outer boundary at
t = 0.25 s (see below and Figure 3). Due to limited
computing time, run A was stopped at t = 0.28215 s,
which corresponds to 6705 orbits of the flow near
the inner boundary. We expect the accretion to con-
tinue much longer, roughly the collapse timescale of
the Helium envelope (∼ 10 s), as in MacFadyen &
Woosley (1999).

Figure 2 shows the time evolution of several gross
properties run A: the mass accretion rate through
the inner boundary (top left panel), total magnetic
energy (top right panel), neutrino luminosity (bot-
tom left panel) and radial Poynting and kinetic flux
along the polar axis at r = 190 RS (bottom right
panel). Unless otherwise stated, all quantities in this
paper are in cgs units.

Initially, during a precollapse phase, Ṁa stays
nearly constant at the level of ∼ 5×1032 g s−1. Dur-
ing this phase the zero-l gas inside the initial helium
envelope is accreted. Around t = 0.13 s, Ṁa rises
sharply as the gas from the initial helium envelope
reaches the inner boundary. However, this gas has
non-zero l and a rotational supported torus and its
corona and outflow form (as illustrated in Figure 1),
causing a drop in Ṁa after it reaches a maximum of
2 × 1033 g s−1 at t = 0.145 s.

The accretion rate reaches a minimum of 6 ×

1031 g s−1 at t ≈ 0.182 s and then fluctuates with a
clear long-term increase. This increase is caused by
the contribution from gas with l < 2RSc, which is
directly accreted (without need to transport l) from
outside the main body of the torus (flow component
C in Figure 5 exemplifies a low l inflow outside the
torus). The total mass and angular momentum ac-
creted onto the BH during run A (0.3 s) are 0.1 M�

and 3 × 1039 g cm2 s−1, respectively.

The top left panel of Figure 2 shows the time evo-
lution of the total magnetic energy (integrated over
the entire computational domain). The late phase
of the time evolution of the magnetic energy is char-
acteristic of weakly magnetized rotating accretion
flows. Most of the magnetic energy is due to the
toroidal component of the field. We note a huge in-
crease of the toroidal magnetic field coinciding with
the formation and development of the torus. Both
Bφ and Bθ are practically zero while Br is constant
during the precollapse phase of the evolution. But
at t = 0.14 s the total energy in Bφ equals that in
Br and just 0.025 s later the Bφ energy is higher
than the Br energy by a factor of 50. At the end
of simulations the total kinetic energy from the ra-
dial, latitudinal and rotational motion are 4 × 1050,
6.5 × 1049, and 2.3 × 1051 erg, respectively. These

gross properties indicate that the magnetic energy is
large enough to play an important role in the flow
dynamics.

The bottom left panel of Figure 2 shows the time
evolution of the neutrino luminosity, Lν . The neu-
trino luminosity was computed under the assump-
tion that all the gas in the model is optically thin
to neutrinos. The neutrino emission stays at a rel-
atively constant level of 3 × 1052 erg s−1 after the
torus forms. This indicates that the gross properties
– such as the temperature, density, and total mass
– of the densest and hottest parts of the flow (the
torus) also stay constant during the later phase of
the evolution.

The bottom right panel in Figure 2 shows the
area-integrated radial fluxes of magnetic and kinetic
energy at r = 190 RS inside the polar outflow. For-
mally, the polar outflow is defined as the region
where vr > 0 and β < 1. The Poynting fluxes, stays
nearly constant at the level of ∼ 1 × 1051 egr s−1

between t = 0.185 s (the time when the jet reached
the radius of 190 RS) and t = 0.22 s then fluctu-
ates with a clear long-term decrease. Comparing the
two fluxes, we conclude that the outflow is Poynting
flux-dominated, with the Poynting flux exceeding the
kinetic energy flux by up to an order of magnitude.
We note that the radial fluxes continue to vary with
time by a factor up to 10 even during the late phase
of the evolution and they are anti-correlated with the
mass accretion. The radial fluxes show much less de-
tail compared to other properties shown in Figure 2
because there were computed less frequently during
the course of the simulation.

The decrease of the radial fluxes and their anti-
correlation with ṀA is quite a surprising result be-
cause the jet is supposed to be powered by accre-
tion! However, the situation in a collapsing star is
complex because Ṁa has two sources: (i) an accre-
tion disk which does power a strong jet and (ii) the
low l gas that accretes directly onto a BH and can
prevent development of the torus jet. This infalling
gas can produce an outflow/jet of its own but with
properties different from those of the torus jet (see
below).

Figure 3 shows maps of the flow pattern and
maps of Bφ on four different length scales at t =
0.285 s (the left panels show the inner most part of
the flow whereas the right panels show the flow on
the largest scale). The main outflow is magnetically
driven from the torus. Soon after the torus forms,
the magnetic field very quickly deviates from its ini-
tial radial configuration due to MRI and shear (see
Figure 2). This leads to fast growth of the toroidal
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Fig. 3. Maps of logarithmic density (top) and toroidal magnetic field maps (bottom) overplotted with the direction of
the poloidal velocity from run A at the end of simulations, i.e. time 0.2815 s. The length range increases from to the
right. Note that the accretion torus is relatively small (it spans from 1 to about 20 RS). Nevertheless, this tiny torus
generates an outflow and mass and energy that can the dynamics and structure of the collapsing star over a large range
of radii along the rotational axis.

magnetic field as field lines wind up due to the dif-
ferential rotation. As a result the toroidal field dom-
inates over the poloidal field and the gradient of the
former drives an outflow.

A comparison between the density and Bφ maps
shows that the polar regions of low density and high
Bφ coincide with the region of an outflow. Proga et
al. (2003) noted that during the latter phase of the
evolution not all of the material in the outflow orig-
inated in the innermost part of the torus – a signifi-
cant part of the outflow is “peeled off” the infalling
gas at large radii by the magnetic pressure. How-
ever, as our later analysis and simulations showed
the outflow from the infalling gas is caused not only
by the peeling off effect but it is also produced by
the magnetic and thermal effects operating inside

the infalling gas itself. Thus there are not two but
three types of outflows from a collapsing star (see
Figure 5).

The first two panels of the left hand side of Fig-
ure 3 illustrate that the inner torus and its corona
and outflow cannot always prevent the low-l gas from
reaching the BH. Even the magnetic field cannot do
it if the density of the incoming gas is too high (com-
pare the upper and lower halfs of the panels in Fig-
ures 3 and 5).

We finish the presentation of the results from
run A with an analysis of the properties of the ac-
cretion torus, i.e., the main engine in the model.
Figure 4 shows the radial profiles of several quan-
tities in run A, angle-averaged over a small wedge
near the equator (between θ = 86◦ and 94◦), and
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MHD COLLAPSAR MODEL 53

Fig. 4. Radial profiles of various quantities from our run, time-averaged from 0.2629 through 0.2818 s. To construct
each plot, we averaged the profiles over angle between θ = 86◦ and 94◦. The top left panel plots the density (solid
line) and temperature (dashed line). The top middle panel plots the gas pressure (solid line) and magnetic pressure.
The top right panel plots the rotational, radial, Keplerian, and Alfvén velocities (solid, dashed, dot-dashed, and dotted
line, respectively), as well as the sound speed (triple-dot dashed line). The bottom left panel plots the angular velocity
in units of 2c/Rs. The bottom middle panel plots the Maxwell stress, αmag, and the Reynolds stress, αgas (solid and
dashed line, respectively). We calculate the Reynolds stress using eq. (15) in PB03 and show only its amplitude. The
bottom right panel plots the radial, latitudinal and toroidal components of the magnetic field (dot-dashed, dashed, and
solid line, respectively). The length scale is in units of the BH radius (i.e., r′ = r/RS).

time-averaged over 50 data files covering a period at
the end of the simulations (from 0.2629 s through
0.2818 s). We indicate the location of the last sta-
ble circular orbit by the vertical dotted line in each
panel.

We measure the Reynolds stress, αgas ≡<
ρvrδvφ > /P , and the Maxwell stress normalized
to the magnetic pressure, αmag ≡< 2BrBφ/B2 >.
Note that Figure 4 shows only the magnitude, not
the sign, of the normalized stresses. We find that
except for r <

∼ 2.5RS and 10RS
<
∼ r <

∼ 12RS , the
Maxwell stress dominates over the Reynolds stress
in the inner flow. The last panel in Figure 4 shows
that the toroidal component of the magnetic field is
dominant for r < 50 RS .

Proga et al.’s simulation explored a relatively
conservative case as they allowed for neutrino emis-
sion but did not allow for the emitted neutrinos to

interact with the gas or annihilate. The only sources
of nonadiabatic heating in their simulation are the
artificial viscosity and resistivity.

3.2. High resolution run

To explore the nature of the multi-component
flow resulting from a collapse of a rotating star we
rerun model A using higher numerical resolution (see
Section 3.1 and Proga 2006). Higher resolution simu-
lations are especially required to study the evolution
and effects of MRI. Run B is qualitatively consistent
with the results from the fiducial model. In particu-
lar, all the flow components found in run A can be
also found in run B. Additionally, the properties of
the flow components found in run A are consistent
with those in run A. For example, MRI drives the
evolution of the equatorial torus and the simulations
resolve the fastest growing MRI mode.
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Fig. 5. A map of logarithmic density overplotted with the direction of the poloidal velocity (left panel) and a contour
map of specific angular momentum, l (right panel) from high resolution run B at t = 0.0582 s. The specific angular
momentum is in units of 2RSc. The minimum of l (contour closest to the rotational z-axis) is 0.2, and the contour
levels are equally spaced at intervals of l = 0.2. The maximum of l is 1.0 and its contour is plotted using dotted curves,
whereas all the other contours are plotted using solid curves. This figure shows an inner most part of the flow when a
torus just formed and started to develop an outflow. Note that the latter pushed aside the polar funnel accretion flow
only below the equator. This figure was chosen to illustrate the complexity of the inner most part of the flow inside a
collapsing magnetized star. The upper case letters, in the right panel, mark seven major components of this complex
flow: A – a very low l polar funnel accretion flow; B – a highly magnetized outflow generated from a low l inflow C; C –
an inflow with angular momentum so low that the flow would accrete directly onto a BH; D – a rotationally supported,
MHD, turbulent accretion torus; E – a magnetized torus corona; F – a highly magnetized outflow generated from the
torus; and G – a polar funnel outflow driven thermally (compare with A). See Proga (2005, in preparation) for more
details.

Figure 5 shows the inner most part of the flow in
run B at t=0.582 s. The seven main flow components
are marked with upper case letters (see the figure
caption).

In the context of GRBs, the most important com-
ponent of the flow is an outflow. The biggest dif-
ference between the MHD collapsar model and the
HD collapsar model considered by MacFadyen &
Woosley (1999) is that in the MHD limit, the outflow
that develops soon after a torus forms is so strong
that it breaks through a star even when very little
of a low l gas is accreted whereas in the HD limit,
a torus wind is relatively weak and the polar funnel
must be evacuated if the wind were to leave the star.

3.3. An outflow from a very l infall

Generally, runs A and B show that large-scale
magnetic fields can produce two types of outflows:
(1) a jet from a rotationally supported accretion disk
or torus and (2) an outflow from extremely low an-
gular momentum gas that almost radially accretes
onto a BH (e.g., PB03; Proga et al. 2003). Both an-
alytic and numerical studies support the view that
the former is robust. (e.g., Blandford & Payne 1982;
Blandford 1990; De Villiers et al. 2005). In fact,
most MHD simulations of an accretion disk or torus
show outflows (e.g., Uchida & Shibata 1985; Stone
& Norman 1994; Hawley & Balbus 2002; De Villiers
et al. 2005; Mizuno et al. 2004b; Kato, Mineshige,
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Fig. 6. Maps of logarithmic density (left panel) and toroidal magnetic field (right panel) overplotted with an example
of a streamline corresponding to an inflow/outflow for model C. The maps are also overplotted with the direction of the
poloidal velocity and the direction of the poloidal field (the left and right panels, respectively). See Proga (2005) for
more details.

& Shibata 2004; McKinney & Gammie 2004). How-
ever, the latter which is a simple, self-consistent solu-
tion for the MHD jet problem, has not been studied
much. To articulate the basic physics that occurs
in jet production, Proga (2005) performed simula-
tions of a flow with angular momentum so low that,
if not for the effects of MHD, the flow would accrete
directly onto a BH without forming a disk. These
simulations used simplified physics (i.e., no neutrino
cooling and an adiabatic equation of state) similar
to that explored by PB03.

In Proga (2005), we found that even with a very
weak initial magnetic field, the flow settles into a
configuration with four components: (i) an equato-
rial inflow, (ii) a bipolar outflow, (iii) a polar funnel
outflow, and (iv) a polar funnel inflow. The sec-
ond flow component of the MHD flow represents a
simple yet robust example of a well-organized in-
flow/outflow solution to the problem of MHD jet for-
mation (see Figure 6) and is the same in nature as
components C and B in run B as well as in run A
(e.g., Figure 5). The outflow from the low l infall
is heavy, highly magnetized, and driven by magnetic
and centrifugal forces. A significant fraction of the
total energy in the jet is carried out by a large scale

magnetic field. The properties of this outflow help
to understand that the time evolution of the out-
flow in run A. As we mentioned in Section 3.1, the
low l inflow can block or prevent development of the
torus jet, the latter being light. The low l inflow
produces the outflow that is heavy and although a
significant fraction of its total energy is carried out
by a large scale magnetic field it is not Poynting flux-
dominated, contrary to the torus jet.

A comparison between various simulations in-
cluding those presented in Sections 3.1 and 3.2,
where specific angular momentum was higher than
that assumed in Proga (2005), indicates that the flow
components B and C develop for a wide range of the
properties of the flow near the equator and near the
poles.

4. CONCLUSIONS

Fully 3 dimensional GR MHD simulations are re-
quired to capture many of the effects and instabili-
ties of a magnetized fluid in a rotating star collapsing
onto a BH . Neutrino physics, a sophisticated equa-
tion of state and self-gravity should also be included.
However, such full treatment of the MHD collapsar
model is beyond reach of the current numerical codes
at least for now.
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Here we present results from time-dependent
two-dimensional MHD simulations of the collapsar
model using pseudo-Newtonian potential. The simu-
lations show that: 1) soon after the rotationally sup-
ported torus forms, the magnetic field very quickly
starts deviating from purely radial due to MRI and
shear. This leads to fast growth of the toroidal
magnetic field as field lines wind up due to the
torus rotation; 2) The toroidal field dominates over
the poloidal field and the gradient of the former
drives a torus outflow against supersonically accret-
ing gas through the polar funnel; 3) The torus out-
flow is Poynting flux-dominated; 4) The torus out-
flow reaches the outer boundary of the computa-
tional domain (5 × 108 cm) with an expansion ve-
locity of 0.2 c; 5) The torus outflow is in a form of
a relatively narrow jet (when the jet breaks through
the outer boundary its half opening angle is 5◦); 6)
Most of the energy released during the accretion is
in neutrinos, Lν = 2 × 1052 erg s−1. Neutrino driv-
ing will increase the outflow energy (e.g., Fryer &
Mészáros 2003, and references therein), but could
also increase the mass loading of the outflow if the
energy is deposited in the torus. A comparison of the
MHD simulations with their HD counterparts show
that a strong outflow breaks through a magnetized
star much sooner than through a non-magnetized
star.

The above conclusions were reached by Proga et
al. (2003) and here we confirmed them using a higher
resolution simulation. However, we emphasize the
fact that the flow settles into a complex convolution
of several distinct, time-dependent flow components
and the above mentioned torus and its outflow are
just two of them. Other flow components include
a torus corona and low l flows. A rotationally sup-
ported torus and its corona and outflows were exten-
sively studied in the past and remain a focus of many
studies. We stress that in the context of the collap-
sar model, where very low l and high l fluids are
present, the situation is more complex. Therefore,
future work, even without neutrino physics or effects
of general relativity, is important to explore connec-
tion and interaction of all the flow components, and
their observational implications.
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