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RESUMEN

Las oscilaciones cuasi periódicas de alta frecuencia (OCP-AF) observadas en el flujo de rayos X de binarias
galácticas con agujeros negros y estrellas de neutrones se explican mediante el modelo de resonancias propuesto
en 2000 por Kluźniak y Abramowicz. Estas se deben a resonancias no lineales en los modos de oscilación en
discos de acreción en el régimen gravitacional de campo fuerte. Hay aún problemas que no han sido resueltos,
pero las observaciones recientes de OCP-AF proporcionan evidencia directa de resonancias no lineales. Este
art́ıculo da una revisión actualizada (mayo 2006) de lo que ha sido explicado, y de lo que falta aún por entender,
dentro del modelo de resonancia.

ABSTRACT

The resonance model proposed in 2000 by Kluźniak and Abramowicz, explains the twin peak, high frequency,
quasi periodic oscillations (HF QPOs) observed in the X-ray flux from black hole and neutron stars, as a
non-linear resonance in modes of oscillations of accretion flows in strong gravity. While several important
physical questions remain unanswered, recent observations of HF QPOs provide direct evidence of non-linear
resonances. This article gives an up to date (May 2006) review of what has been explained, and what has not
been explained, by the resonance model.
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1. TWIN PEAK QPOS IN BLACK HOLE AND
NEUTRON STARS

The Fourier power density spectra of X-ray vari-
ability in several neutron star and black hole sources
in Galactic low mass X-ray binaries (LMXBs), often
reveal pairs of “twin peak” QPOs (Figure 1), with
frequencies νU > νL .

Kluźniak & Abramowicz (2000,2001) suggested
that the twin peak QPOs are caused by a non-linear
resonance between two coupled modes of small am-
plitude oscillations of accretion flow in strong grav-
ity. This suggestion has been developed, with the
help of numerous collaborators7 into the “twin peak
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QPO resonance model” (for references see Abramow-
icz et al. 2005). Two (overlapping) methodologies
have been used in developing the model: an “in-
trinsic, mathematical” approach, and an “external,
physical” approach.

The mathematical approach allowed a practical
and efficient means of identifying secure results, once
the basic physics of the QPOs had been identified.
It is based on the theory of small oscillations, and of-
fers a standard, well established, purely mathemat-
ical scheme (not always technically easy, however)
for an exact description of the “intrinsic” oscillatory
properties of QPOs. Examples of the ones that have
been already fully explained by this approach are
given below in Section 1.1. Future developments may
only add a more detailed physical interpretation, but
the essence of the explanation will stay.

Obviously, however, there are important issues
that cannot be resolved by pure mathematics of the
theory of small oscillations alone. They have been
studied in the context of detailed physical models of
accretion flows. Some of these physical issues, “ex-
ternal” to the mathematical properties of coupled
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QPOS EXPLAINED 9

Fig. 1. Twin peak QPOs. Note the 3:2 ratio of the frequencies. Left: Typical neutron star frequencies, ∼ 600Hz and
900Hz (from van der Klis et al. 1997). Right: Frequencies in a black hole (from Strohmayer 2001).

Fig. 2. Two HF QPOs in a 401 Hz accreting millisecond pulsar (from Wijnands et al. 2003). The QPO frequencies,
about 700 and 500 Hz, differ by one-half the spin frequency.

oscillators, are listed in Section 2, as are the results
obtained. The results are not as certain as the “in-
trinsic mathematical” ones, and it is likely that de-
tailed interpretations in terms of accretion physics
may change in the future.

1.1. What is fully explained by pure mathematics of
resonance

At night, all cats are the same — black. In Na-
ture, all weakly coupled non-linear oscillators in res-
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10 ABRAMOWICZ ET AL.

onance are the same — in their mathematical de-
scription. Without knowing the internal structure of
pendula, bridges, airplane wings, or accretion disks,
one may explain many oscillatory properties of these
very different systems, using a purely mathematical
theory of small non-linear oscillations. Our QPO res-
onance model is based exactly on this principle. It
should be therefore considered natural (rather than
surprising) that the resonance model fully explains
several observational properties of QPOs (including
a few considered most fundamental by the observers)
directly from the mathematical theory of small non-
linear oscillations, without reference to the detailed
physics of accretion flows. The first three of these
properties, which are particularly relevant to neutron
star kHz QPOs, find their basis in the mathematical
formalism given in Section 5.

[1] The frequency-frequency correlation (the
Bursa line). For a given neutron star source, the
upper and lower frequencies are linearly correlated
along a “Bursa line,”

νU = AνL + B, (1)

with A 6= 3/2. Data points occupy a finite sector
of the Bursa line (Figure 3). We will refer to the
intersection of the Bursa line with the reference line
νU = (3/2) νL as the “resonance point,” because,
within the resonance model, at this point the fre-
quencies are equal to the eigen-frequencies of the
resonant modes (Abramowicz et al. 2003b; Rebusco
2004; Horák 2004a).

[2] The slope-intercept anti-correlation. For
a sample of several neutron star sources, the coeffi-
cients A ,B of the Bursa lines (eq. 1) correspond-
ing to individual sources in the sample are anticor-
related,

A = 3/2 − B/ν1, (2)

withν1 = 600 Hz±∆ν where ∆ν � 600 Hz is a small
scatter (Figure 4: Right; Abramowicz et al. 2005,
2006a).

[3] The rational frequency ratio. As first no-
ticed by Abramowicz & Kluźniak (2001), and con-
firmed by several other authors (Miller et al. 2001;
Remillard et al. 2002; see Török et al. 2005 for most
recent references), for black hole sources the frequen-
cies νU and νL are commensurable,8 and their ratio

8The resonance model predicts that the ratio should be
m/n with m, n being small integers. Several values are possi-
ble, and several values may have been observed (e.g. 3/2, 5/3,
2/1). In strong gravity the m/n = 3/2 resonance is expected
to be the most prominent one (Kluźniak & Abramowicz 2002;

fixed at m/n = 3/2. For neutron star sources the
ratio varies in time, but its statistical distribution
peaks up, within a few percent, at the 3/2 value
(Figure 4: Left; Abramowicz et al. 2003a; Belloni,
Méndez, & Homan 2005). Recent evidence suggests
that the black-hole HF QPO frequencies may also
vary: Homan (2006) detects on occasion a single 260
Hz QPO in GRO J1655-40, which he identifies as an
orphaned lower QPO of the usual pair (300 Hz, 450
Hz).

[4] A jump in rms amplitude difference. The
difference between the rms amplitudes of the upper
and lower QPO peaks, ∆ rms, is positive on one side
of the “resonance point” and negative on the other
(Figure 5; Török, Barret, & Horák 2006; Horák et
al. 2006b).

1.2. What is also explained by the resonance model

[5] The fast and slow rotators: QPOs and neu-
tron star spin. In outburst, transient accreting
LMXBs often display coherent pulsations, whose fre-
quency, ν, is interpreted as the spin rate of the ac-
creting neutron star (Wijnands & van der Klis 1998).
When they display twin HF QPOs, the frequency
difference of the QPOs is equal to the spin for the
slow rotators (ν ≤ 400 Hz), while for the fast ro-
tators (ν ≥ 400 Hz) it is equal to to one-half the
spin difference (Figure 2); a similar effect occurs in
persistent LMXBs, if the burst frequency is inter-
preted as the spin frequency (Wijnands et al. 2003;
Linares et al. 2005). Within the resonance model
this is interpreted as evidence for non-linear forc-
ing of the oscillations by the magnetic dipole of the
spinning neutron star—when the forcing frequency
exceeds the eigen-frequency difference of the two res-
onant modes, the strongest resonant response occurs
when the eigen-frequencies are separated by one-half
the forcing frequency (Kluźniak et al. 2004; Lee,
Abramowicz, & Kluźniak 2004).

[6] Sub-harmonics. Sub-harmonics (i.e., frequen-
cies ν0/n, with n = 2, 3, ..., where ν0 is the funda-
mental) are a hallmark of non-linear resonance, and
in addition to the sub-harmonic relationship between
the frequencies of fast rotators (Figure 2), there is
evidence of subharmonics in black-hole HF QPOs
(Remillard et al. 2002).

[7] Oscillation of QPO frequency. Yu, van der
Klis, & Yonker (2001) report that the frequency of

Section 3, below), and this ratio is indeed observed far more
often than the other ones.
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QPOS EXPLAINED 11

Fig. 3. For individual neutron star sources, the upper νU and lower νL twin peak QPO frequencies are correlated along
the straight “Bursa lines”, νU = AνL + B, with A 6= 1.5. Also shown is the line νU = (3/2)νL. This figure is from
Abramowicz et al. 2006a.

Fig. 4. Left: The histogram of frequency ratios observed in neutron stars has a prominent peak at the 3:2 value (after
Abramowicz et al. 2003a). Right: The data point directly to a 3/2 ratio: the coefficients A and B of the individual
Bursa lines, νU = AνL + B are anti correlated, and obey A = 3/2 − γB, with γ ≈ 1/(600 Hz) (from Abramowicz et al.
2006a).

the upper kHz QPO, as well as the relative ampli-
tudes of both twin QPOs, vary periodically together
with the count rate. Such behavior is expected in
a conservative system of two coupled oscillators in
resonance (Horák et al. 2004b).

[8] 1/M scaling. Another very important aspect
of HF QPOs is the inverse mass scaling reported by
McClintock & Remillard (2006). This is explained
by the mathematics of general relativity, where all

frequencies scale inversely with the mass of the black
hole, or neutron star. All relativistic models of QPOs
have this property, even if they do not involve oscilla-
tions of the accretion disk (e.g., Kluźniak, Michelson,
& Wagoner 1990; Stella & Vietri 1999). Within our
resonance model, the resonance occurs between two
modes of an accretion disk or a torus computed in
general relativity (e.g., Wagoner 1999; Abramowicz
et al. 2006b), so the 1/M scaling is a built-in feature
of the model.
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12 ABRAMOWICZ ET AL.

Fig. 5. The difference in rms amplitudes of the twin kHz QPOs undergoes a sign change as the frequency ratio crosses
the 3/2 resonance (from Török, Barret, & Horák, 2006). The data analysis technique has been described in Barret et
al. 2005b,2006.

1.3. What may yet be explained by the resonance
model

Examples of those intrinsic QPO properties that
have not yet been explained by pure mathematics of
the resonance model, but most likely will be, are the
behavior of the quality factor Q of the neutron star
kHz QPOs (Barret et al. 2005a,b), and the correla-
tion of kHz frequencies with those of lower-frequency
features in the power density spectrum (Psaltis, Bel-
loni, & van der Klis 1999; Mauche 2002; Warner,
Woudt, & Pretorius 2003).

2. WHAT CANNOT BE EXPLAINED BY PURE
MATHEMATICS

An example of an important, and still unex-
plained, property of QPOs that depends on factors
external to the mathematics of coupled oscillators is
the remarkable connection of QPOs with the spectral
states of black hole and neutron star sources (Homan
et al. 2001; Remillard et al. 2002).

Most likely, it depends on detailed physics that
governs excitation, damping and modulation. A full
explanation will involve radiative transfer calcula-
tions that will only be possible to carry out when
the full structure of the accretion disk is known in
detail.

Some other (fundamental) issues and questions
that (most likely) cannot be explained by pure math-
ematics of the theory of small oscillations alone, and
must be studied within a detailed physical model of
accretion flow, are listed below.

[a] How is the X-ray flux modulated by the oscilla-
tions of the accretion disk that give rise to QPOs?
A full answer to this question is only possible after
another question is answered:

[b] What two modes are in resonance? An often
discussed possibility (first suggested by Kluźniak &
Abramowicz 2002) is that these are epicyclic modes
of slender tori, and this model is reviewed in the com-
panion article (Kluźniak et al. 2007). See Zanotti,
Rezzola, & Font 2003; Blaes et al. 2006; Abramowicz
et al. 2006b for related models. The corresponding
modulation mechanism in black holes would be light
bending (Bursa et al. 2004; Schnittman & Rezzolla
2006). However, this is not firmly established and
there are other possibilities. Kato (2004a,b,2005)
discusses non-linear coupling of g-modes of a stan-
dard thin disk, with the resonance mediated by a
warp postulated to be present in the disk.

[c] How are the modes excited and coupled? What is
the energy source that feeds the resonance? It has
been suggested (Kluźniak et al. 2004; Lee et al.
2004) that the excitation in the neutron star case
could be effected by the neutron star spin (e.g., due
to a magnetic coupling), and in the black hole case
by the influence of turbulence (Abramowicz et al.
2005; Brandenburg 2005; Vio et al. 2006).

3. THE FREQUENCIES OF STRONG GRAVITY:
KEPLERIAN AND EPICYCLIC

Epicyclic frequencies of free particles enter our
discussion of fluid oscillations in accretion flows, be-
cause some important modes of fluid oscillations in
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QPOS EXPLAINED 13

Fig. 6. QPO frequencies expected on 1/M scaling for different systems (after Bursa 2006).

Fig. 7. X-ray states and HFQPOs during the 1996-1997 outburst of GRO J1655–40. The left panel shows the energy
diagram, where flux from the accretion disk is plotted versus flux from the power-law component. Here, the symbol
type denotes the X-ray state: thermal (red “x”), hard (blue square), steep power-law (green triangle), and any type of
intermediate state (yellow circle). The right panel shows the same data points, while the symbol choice denotes HFQPO
detections: 300 Hz (blue squares), 450 Hz (blue star), both HFQPOs (blue circle), and no HFQPO (black “x”). The
HFQPO detections are clearly linked to the SPL state, and the HFQPO frequency is clearly correlated with power-law
luminosity. From Remillard et al. 2002.

accretion flows (that may be directly relevant for
QPOs), have their eigen-frequencies nearly equal to
the epicyclic frequencies in nearly Keplerian mo-

tion of free particles (Kluźniak & Abramowicz 2002;
Abramowicz et al. 2003b, 2006b; Blaes et al. 2006).
Small perturbations of these flows are given in the
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14 ABRAMOWICZ ET AL.

Fig. 8. Left: The orbital and epicyclic frequencies for a 10M� black hole with angular momentum 0.8M 2G/c. Also
shown are the locations of the horizon and the photon orbit. Right: The epicyclic frequencies in Kerr metric.

lowest order by two uncoupled harmonic, “epicyclic”
oscillations,

δr̈ + (ωr)2δr = 0, (3)

δθ̈ + (ωθ)2δθ = 0. (4)

In weak Newtonian gravity with the −GM/r poten-
tial the three characteristic orbital frequencies, Ke-
plerian ΩK , radial epicyclic ωr and vertical epicyclic
ωθ, are all equal. In strong gravity, ΩK ≥ ωθ > ωr

for pro-grade orbits, and ωθ ≥ ΩK > ωr for retro-
grade orbits (Figure 8).

3.1. The strong gravity Mathieu equation

Even for a nearly-Keplerian flow pressure and
other stresses may provide a non-linear coupling, and
the simplest one is δr δθ in eq. (4). In this case, the
new version of eq. (4) may be combined with the
solution of eq. (3) into the Mathieu form,

δθ̈ + (ωθ)2[1 + A cos(ωr t)]δθ = 0. (5)

From the theory of Mathieu equation one knows that
a parametric resonance occurs when nωr = 2 ωθ. Be-
cause in strong gravity ωr < ωθ, the smallest value
of n consistent with the resonance is n = 3, and
the resonant ratio is ωθ/ωr = 3/2. Note that the
particular value 3/2 is a direct consequence of the
strong gravity. For a more complete discussion, see
Kluźniak & Abramowicz 2002, Abramowicz et al.
2003b, Kluźniak 2005.

4. CONCLUSIONS

General features of the mathematical theory of
small non-linear oscillations should be taken seri-
ously in any theoretical study of QPOs. Suppose

that a particular observed QPO property, [1]-[7] of
Section 1.1, or another one, was theoretically ex-
plained in the framework of a very well determined
model that employs some very specific, detailed and
sophisticated “real physics” based, e.g., on thin disk
diskoseismology, MHD accretion flows, or warped
disk precession. Does this mean that this particu-
lar “real physics” is supported by the QPO obser-
vations? Not necessarily. It often happens that the
derived property is not a signature of the particular
physics that was assumed, but is instead a purely
mathematical property of small non-linear, weakly
coupled oscillations in resonance. A different model,
with a different physics, would recover this property
as well.

5. APPENDIX: MATHEMATICS OF THE QPO
RESONANCE MODEL

Although the simplest δr δθ coupling may not be
realistic, a parametric Mathieu-type resonance very
similar to the one discussed in Section 3.1 typically
occurs in a wide class of physically possible nearly-
Keplerian accretion flow. This was first carefully
demonstrated by Rebusco (2004), who realized that
the most convenient mathematical tool here should
be the multiple scales method. Her work was then
generalized by Horák (2004a, 2005), Horák & Karas
(2006a) and others. They considered the most gen-
eral mathematical model of coupled oscillators, and
made no mathematical simplifications. These results
provide the hard mathematical core for the reso-
nance model.

5.1. Equations

The resonance model studies modes of small
amplitude oscillations in nearly-Keplerian accretion
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QPOS EXPLAINED 15

flows. Oscillations occur near an “equilibrium” in
which fluid elements move on circular orbits. The
Lagrangean displacement from the equilibrium has
the components,

δr(s) = r(s) − r0, (6)

δθ(s) = θ(s) − θ0, (7)

δϕ(s) = ϕ(s) − (uϕ
0 + δuϕ

0 )s, (8)

δt(s) = t(s) − (ut
0 + δut

0)s, (9)

where the index zero denotes a constant quantity
in equilibrium. The displacement components obey
three independent coupled, non-linear, second order
ordinary differential equations, consistent with three
coupled, forced and damped, anharmonic oscillators,

δr̈ + (ω0
r)2δr = Xr(δxk, δẋk) + Fr(xk, uk, s),(10)

δθ̈ + (ω0
θ)2δθ = Xθ(δxk, δẋk) + Fθ(xk, uk, s),(11)

δϕ̈ + (ω0
ϕ)2δϕ = Xϕ(δxk, δẋk) + Fϕ(xk, uk, s).(12)

For symmetry, it is sometime convenient to consider
the fourth equation,

δẗ + (ω0
t )2δt = Xt(δx

k, δẋk) + Ft(x
k, uk, s). (13)

Equations (10)–(13) are not independent, however,
because of uiui = 1. In (10)-(13) a dot denotes dif-
ferentiation with respect to the proper time s.

5.2. Expansion, multiple scales, solutions

Let us study nonlinear oscillations of the system
having two degrees of freedom, i.e., the coordinate
perturbations δr and δθ. The oscillations are de-
scribed by two coupled differential equations of the
very general form

δ̈r + ω2
r δr = ω2

r fr(δr, δθ, δ̇r, δ̇θ), (14)

δ̈θ + ω2
θ δθ = ω2

θ fθ(δr, δθ, δ̇r, δ̇θ). (15)

Suppose that the functions fr and fθ are nonlinear,
i.e., their Taylor expansions start in the second or-
der. Another assumption is that these functions are
invariant under reflection of time (i.e., the Taylor ex-
pansion does not contain odd powers of time deriva-
tives of δr and δθ). As we see later, this assumption
is related to the conservation of energy in the system.
Many authors studied such systems with a particu-
lar form of functions f and g (Nayfeh & Mook 1979),
however, in this paper we keep discussion fully gen-
eral.

We seek the solutions of the governing equations
in the form of the multiple-scales expansions (Nayfeh

& Mook 1979)

δr(t, ε) =
4∑

n=1

εnrn(Tµ), δθ(t, ε) =
4∑

n=1

εnθn(Tµ),

(16)
where several time scales Tµ are introduced instead
of the physical time t,

Tµ ≡ εµt, µ = 0, 1, 2, 3. (17)

The time scales are treated as independent. It fol-
lows that instead of the single time derivative we
have an expansion of partial derivatives with respect
to the Tµ

d

dt
= 0 + ε1 + ε22 + ε33 + O(ε4), (18)

d2

dt2
= 02 + 2ε01 + ε2(12 + 202) +

2ε3(03 + 12) + O(ε4), (19)

where µ = ∂/∂Tµ.
We expand the nonlinear functions fr and fθ into

the Taylor series and then we substitute the expan-
sions (16), (18) and (19). Finally, we compare the
coefficients of the same powers of ε on both sides in
the resulting couple of equations. This way we get a
set of linear second-order differential equations that
can be solved successively – the lower-order terms
of the expansion (16) appear as forcing terms on the
right-hand sides in the equations for the higher order
approximations.

In the first order we obtain equations correspond-
ing to the linear approximation

(02 + ω2
r)r1 = 0, (02 + ω2

θ)θ1 = 0. (20)

with the solutions

r1 = Ar(T1, T2, T3)eiωrT0 + cc, (21)

θ1 = Aθ(T1, T2, T3)eiωθT0 + cc. (22)

The complex amplitudes Âr and Aθ generally de-
pend on the higher time-scales.

5.3. Resonances

The solutions (21) and (21) substituted into the
quadratic terms in the right-hand side of the second-
order differential equations produces terms that os-
cillates with frequencies 2ωr, 2ωθ and ωθ±ωr. When
the frequency ratio ωr/ωθ is far from 1 : 2 and 2 : 1
the solutions r2 and θ2 describe higher harmonics to
the linear-order oscillations r1 and θ1. Hence, the
presence of higher harmonics in the power-spectra is
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16 ABRAMOWICZ ET AL.

a general signature of nonlinear oscillations. Their
frequencies and relative strengths with respect to the
main oscillations could provide us usefull informa-
tions about nonlinearities in the system.

In addition, the right hand sides of the second
order equations contain terms proportional to eiωrT0

and eiωθT0 that oscillate with the same frequency
as the eigen-frequency of the oscillators. These
terms produce secular grow of the amplitudes of the
second-order approximations r2 and θ2 and cause
nonuniform expansions (16). Eliminating them we
get the solvability conditions for the complex am-
plitudes Ar(T1, T2, T3) and Aθ(T1, T2, T3) that give
us the evolution of the system on longer time-scales
(Nayfeh & Mook 1979).

When the eigen-frequencies are in 1:2 or 2:1 ratio
we observe qualitatively different behavior related
to the autoparametric resonance. In that case the
right hand sides contain additional secular terms and
the solvability conditions take different form. Differ-
ent resonances occur in different orders of approx-
imation. The possible resonances in the third or-
der are 1:3, 1:1 and 3:1 and 1:4, 3:2, 2:3 and 4:1 in
the fourth order.9 However, if the governing equa-
tions remain unchanged under the transformation
δθ → −δθ (i.e., the system is reflection symmetric)
the only autoparametric resonances that exists in the
system are 1:2, 1:1, 1:4 and 3:2 (Rebusco 2004).

5.4. Conservative systems

In non-linear systems, oscillation frequencies de-
pend on the amplitudes,

ω(a) = ω
(a)
0 + f (a)(ξ). (23)

Here, ξ is a parameter. When the external influence
is small, F i ≤ O(δx3), the energy of the oscillations
is conserved (Horák 2004a),

E = [A(1)]2 + k[A(2)]2 = const + O(δx3). (24)

This implies that the amplitudes are correlated, and
can be expressed in a parametric form,

[A(1)(ξ)]2 =
(2ξ + ξ0) E

2(1 + ξ0)
, [A(2)(ξ)]2 =

(2 − 2ξ + ξ0) E

2k(1 + ξ0)
,

(25)
with a particular choice of the constant ξ0 that as-
sures f (a)(ξ) = 0 for ξ = 0. Therefore,

ω(a) = ω
(a)
0 + [f (a)]

′

ξ + ... , (26)

9The ratio n : m refers to the eigen-frequency ratio ωθ : ωr.

where the prime denotes differentiation with respect
to ξ at ξ = 0. From this it follows directly that the
frequencies are linearly correlated (Rebusco 2004),

ω(1) = Aω(2) + B. (27)

where the slope A and the intercept B are

A =
[f (1)]

′

[f (2)]′
, B = −Aω

(2)
0 + ω

(1)
0 . (28)
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