OPTICAL VARIABILITY OF INFRARED POWER LAW-SELECTED
GALAXIES & X-RAY SOURCES IN THE GOODS-SOUTH FIELD

Alison Klesman and Vicki Sarajedini

We investigate the use of optical variability over 6 months to identify AGNs in the GOODS-South field. Photometry was performed on a sample of 24 infrared power law-selected AGN candidates and 104 X-ray sources with optical counterparts. We find that while the majority of variable objects are unobscured AGN, 30% of IR-only selected candidates show evidence of AGN via optical variability.

Galaxies were chosen from two catalogs. The first is a sample of IR-selected AGN candidates from Alonso-Herrero et al. (2006) with optical counterparts in the GOODS-South field, selected using Spitzer/MIPS 24 μm observations and are well-fit with a power law spectral energy distribution (SED) through the Spitzer IRAC bands from 3.6 to 8 μm.

The second sample consists of X-ray sources compiled by Alexander et al. (2003) of the Chandra Deep Field South, which overlaps GOODS-South.

To quantify optical variation and pick out the galaxies varying significantly above the photometric error, we calculated the mean magnitude, the standard deviation of the mean, and an error on the standard deviation using the following formula:

\[
\text{error}_\sigma = \sqrt{\frac{\sum (\text{error}_{\text{mag}})^2}{N}}
\]

for each galaxy in each epoch. We determined the “significance” of each object’s variability as simply the standard deviation, \(\sigma\), divided by error\(\sigma\).

We find that 34% of pre-selected AGN candidates using multiwavelength data are optically variable (significance greater than 3 - see Figure 1). Specifically, 30% of IR-only sources, 26% of X-ray-only sources, and 64% of those in both catalogs are variable. The most variable sources appear to be AGN with little obscuration, most of which have BLAGN-like IR SEDs and are both X-ray and IR-selected sources. Several others are optical variables detected only in X-rays. These are unobscured AGN with negligible amounts of dust near the ionizing source, resulting in very little or no reprocessed light.

These findings are consistent with the expectation that optical variability selects primarily Type 1, relatively unobscured AGN. However, three IR-selected objects without X-ray counterparts have been identified with marginal optical variability. Such objects may be heavily obscured AGN, whose X-rays are mainly blocked by dust which re-emits the light at longer wavelengths.

REFERENCES
GOODS Website http://www.stsci.edu/science/goods/