BLACK HOLE MASS ESTIMATES IN NEARBY AGN FROM HOST-BULGE PROPERTIES

E. Benítez,¹ A. Franco-Balderas,¹ I. Cruz-González,¹ L. López-Martin,² and V. H. Chavushyan³

In this work we present the results of an optical photometric study performed to seven nearby AGN that were selected with the SDSS-DR5 database. Surface photometric techniques have been applied to the data in order to obtain B/D ratio and therefore the $M_{\rm R}$ (Bulge) magnitudes. Bulge luminosities were then used to estimate the black-hole masse ($M_{\rm BH}$) in these AGN.

The observations of nearby AGN has always been relevant since they enable us to study their host galaxies properties in a more detailed way. In recent years, it has been shown that host-bulge properties are correlated with the mass of the compact objects associated with the nuclei of normal and active galaxies (for a review on this topic, see Ferrarese & Ford 2005). Therefore, in order to understand the formation and evolution of black-holes (BH) it is necessary to estimate the $M_{\rm BH}$ of active galaxies over the widest possible ranges of host-galaxy types. This is the main goal of our study, still in progress.

In this work, we present the first results obtained from a study of 7 nearby AGN. We have selected objects flagged as QSO in the SDSS-DR5 that have a Petrosian-g magnitudes between 14 < Mg < 17 and distances between 0.02 < z < 0.09. An additional condition imposed to these AGN was that their hostgalaxies should always have a major-axis size > 15''in the isophote $\mu_{\rm B} = 25 \, {\rm mag/arcsec^{-2}}$. These criteria allowed us to consider Type 1 (Sy1 and NLS1) as well as Type 2 (Sy2 and Sy1.9) AGN as good candidates for a deep imaging study using small-moderate size optical telescopes: NOT 2.5 m + ALFOSC, and SPM 1.5 m + Marconi. We present here the results obtained from our first couple of runs in (2006): (UT 1-2) with the NOT, and in November (UT 14-18) with the 1.5 m. We have observed Sy galaxies (i.e. with $M_{\rm B} < -23$) that have a distance range between

TABLE 1

BLACK HOLE MASS

SDSS-Name	$M_{\rm R}({\rm Bulge})$	$\log(M_{\rm BH})$
J020615.98 - 001729.1	$-21.96{\pm}0.05$	$8.39 {\pm} 0.49$
$\rm J021011.49-090335.5$	$-20.03 {\pm} 0.08$	$7.43{\pm}0.48$
J030417.77 + 002827.3	$-20.83 {\pm} 0.06$	$7.83{\pm}0.48$
$\rm J073106.86 + 392644.7$	$-19.67 {\pm} 0.07$	$7.24{\pm}0.48$
J211646.34 + 110237.4	$-20.50{\pm}0.05$	$7.66{\pm}0.48$
J212851.19-010412.4	$-18.78 {\pm} 0.14$	$6.80{\pm}0.48$
J234428.81 + 134946.0	$-19.03{\pm}0.11$	$6.92{\pm}0.48$

174.89 and 340.65 Mpc ($H_0 = 71 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$, $\Omega_m = 0.3$ and $\Omega_{\lambda} = 0.7$). We have obtained several broad-band B, V, R images with minimum exposure times of 2400 s in B, 1600 s in V and 800 s in R. Our images are deep enough since we want to have a S/N~3 in the isophote $\mu_{\rm B} = 25 \,\mathrm{mg}\,/\mathrm{arcsec^{-2}}$. Although the nights assigned with the NOT telescope were not photometric, we got images with a seeing fluctuating from ~0.7–1.0". The average seeing measured at SPM in the R band was ~1.2", but luckily the 4 assigned nights for this project were photometric dark nights. Thus, we have used the SPM data to calibrate the entire set of observed galaxies.

In order to perform the host-galaxy surface photometric study, we have followed the methodology given in Torrealba et al. (2006). Here we will present only part of our results. We have estimated the $M_{\rm BH}$ for each object using the correlation found by McLure & Dunlop (2002) but modified accordingly to our assumed cosmology. In Table 1 we show our estimates. These results, will be compared with $M_{\rm BH}$ estimations derived for the same AGN but with different methods.

REFERENCES

 Ferrarese, L., & Ford, H. 2005, Space Sci. Rev., 116, 523
McLure, R. J., & Dunlop, J. S. 2002, MNRAS, 331, 795
Torrealba, J., Benítez, E., Franco-Balderas, A., & Chavushyan, V. H. 2006, RevMexAA, 42, 3

¹Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70-264 México, D. F., México (erika@astroscu.unam.mx).

²Instituto de Astrofísica de Canarias, 38200, La Laguna, Tenerife, Spain (luislm@iac.es).

³Instituto Nacional de Astrofísica, Óptica y Electrónica, Apdo. Postal 51, 72000 Puebla, México (vahram@inaoep. mx).