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ACCRETION MODEL OF A ROTATING GAS SPHERE ONTO A

SCHWARZSCHILD BLACK HOLE

S. Mendoza1 and E. A. Huerta2

RESUMEN

Construimos un modelo simple de acreción de una esfera de gas sin presión hacia un agujero negro de
Schwarzschild. Lejos del agujero, el flujo rota como un cuerpo ŕıgido. Mostramos como construir soluciones
anaĺıticas en términos de las funciones eĺıpticas de Jacobi. Esta construcción representa la generalización rela-
tivista del modelo Newtoniano de acreción primeramente propuesto por Ulrich (1976). De la misma manera
que, como ocurre en el caso Newtoniano, el flujo naturalmente predice la existencia de un disco de acreción
ecuatorial rotando alrededor del agujero negro. Sin embargo, el radio del disco se incrementa de manera
monotónica sin ĺımite a medida que el flujo se acerca al máximo momento angular permitido por el modelo.

ABSTRACT

We construct a simple accretion model of a rotating pressureless gas sphere onto a Schwarzschild black hole.
Far away from the hole, the flow is assumed to rotate as a rigid body. We show how to build analytic solutions
in terms of Jacobi elliptic functions. This construction represents a general relativistic generalization of the
Newtonian accretion model first proposed by Ulrich (1976). In exactly the same form as it occurs for the
Newtonian case, the flow naturally predicts the existence of an equatorial rotating accretion disk about the
hole. However, the radius of the disk increases monotonically without limit as the flow reaches the angular
momentum corresponding to the maximum limit allowed by the model.

Key Words: accretion, accretion disks — hydrodynamics — relativity

1. INTRODUCTION

Steady spherically symmetric accretion onto a
central gravitational potential (e.g. a star) was first
investigated by Bondi (1952). A general relativis-
tic generalization of this work was made by Michel
(1972). However, realistic models of spherical accre-
tion must consider that gas clouds where objects are
embedded have a certain degree of rotation. The
rotation of the gas cloud predicts the formation of
an equatorial accretion disk for which gas particles
rotate about the central object. The first steady ac-
cretion model, in which a rotating gas sphere with
infinite extent is accreted to a central object was first
investigated by Ulrich (1976). He made a ballistic
analysis, which is approximately true if the initial
specific angular momentum of an infalling particle is
small and if heating by radiation and viscosity effects
are negligible.

A first order general relativistic approximation of
a rotating gas sphere was made by Beloborodov &
Illarionov (2001). In their model, they use approx-
imate solutions to the integration of the geodesic

1Instituto de Astronomı́a, Universidad Nacional Autó-
noma de México, Apdo. Postal 70-264, México, 04510 D. F.,
México (sergio@astroscu.unam.mx).

2Institute of Astronomy, University of Cambridge, Madin-
gley Road, Cambridge CB3 0HA, United Kingdom.

equation (cf. equation (1)) and the initial condi-
tions of it are such that the specific angular mo-
mentum for a single particle h ≤ 2rg, where rg is
the Schwarzschild radius. Such a model is not an
appropriate generalization, since a correct one must
satisfy that h ≥ 2rg. A pseudo–Newtonian Paczyn-
sky & Wiita (1980) numerical approximation of the
ultra–relativistic h = 2rg case was discussed by Lee
& Ramirez-Ruiz (2006). This relativistic numerical
approximation differs in a significant way from the
complete general relativistic solution.

2. AN EXACT SOLUTION FOR THE
ACCRETION PROBLEM IN GENERAL

RELATIVITY

The geodesic equation for material particles in a
Schwarzschild spacetime is given by

(

dv

dφ

)2

= αv3 − v2 + 2v + ε, (1)

where

α := 2

(

M

h

)2

, ε :=
2Etoth

2

M2
. (2)

This equation governs the geometry of the orbits
described in the invariant plane θ = π/2 due to
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ACCRETION ONTO A BLACK HOLE 19

the fact that the geometry of the geodesics is de-
termined by the roots of the cubic equation f(v) =
αv3 − v2 + 2v + ε.
A direct integration of equation (1) yields (cf.
Huerta & Mendoza 2007)

r =
p

v2 (1 − cn2ϕβ)
, (3)

where

β :=
(αv3)

1/2

2
=

(

1 + (1 − 8α)
1/2

8

)1/2

,

and p = r∗ sin2 θ0,

where p is the latus rectum of the generalized conic.
In the Newtonian limit, the length r∗ converges to
the radius of the Newtonian disk rdN = h2

∞
/M .

In order to obtain an equation of motion in terms
of the polar coordinate θ and the initial polar angle
θ0 made by a particle when it starts falling onto the
black hole, we note the fact that in order to recover
the geometry of the spherical 3D space as α → 0 it
should be fulfilled that

cn2ϕβ =
cn2θ0β + cn2θβ − 1

2cn2θ0β − 1
. (4)

Therefore the orbit equation is given by

r =
r∗ sin2 θ0

(

2 cn2θ0β − 1
)

v2 (cn2θ0β − cn2θβ)
. (5)

The equations for the streamlines r(θ), the velocity
field vr, vθ, vϕ and the proper particle number den-
sity n in terms of dimensionless variables (cf. Huerta
& Mendoza (2007)) are given by

r =
sin2 θ0

(

2cn2θ0β − 1
)

v2 (cn2θ0β − cn2θβ)
, (6)

vr = −2r−1/2β
cnβθ snβθ dnβθ

sin θ
f

1/2
1 (θ, θ0, v2, β) ,

(7)

vθ = r−1/2 cn2θ0β − cn2θβ

sin θ
f

1/2
1 (θ, θ0, v2, β) , (8)

vϕ = r−1/2 sin θ0

sin θ

(

v2

(

cn2θ0β − cn2θβ
)

2cn2θ0β − 1

)1/2

, (9)

n =
r−3/2 sin θ0

2f
1/2
1 (θ, θ0, v2, β) f2 (θ, θ0, v2, β)

, (10)

where the functions f1 (θ, θ0, v2, β) and
f2 (θ, θ0, v2, β) are defined by the following re-

lations:

f1 := T1/T2,

T1 := 2 sin2 θ
(

2cn2θ0β − 1
)

− v2 sin2 θ0

(

cn2θ0β − cn2θβ
)

T2 :=
(

2 cn2θ0β − 1
)

{

(

cn2θ0β − cn2θβ
)2

+(2βcnβθ snβθ dnβθ)
2
}

,

f2 := βcnβθ0 snβθ0 dnβθ0 + {sin θ0 cos θ0

×
(

2cn2θ0β − 1
)

− 2βcnβθ0 snβθ0 dnβθ0

× sin2 θ0

}

/v2r.

Equations (6)–(10) are the solutions to the prob-
lem of a rotating gas sphere onto a Schwarzschild
black hole, i.e. they represent a relativistic gener-
alization of the accretion model first proposed by
Ulrich (1976).

This model converges to Ulrich accretion model
when α → 0 (Huerta & Mendoza 2007). On
the other hand, if we consider the particular case
for which the angular momentum is null, then
(6)–(10) describe a radial accretion model onto a
Schwarzschild black hole. These equations corre-
spond to the model first constructed by Michel
(1972) for a pressureless fluid.

In addition, when the parameter α reaches its
maximum value α = 1/8, cf. equation (2), then this
model does not formally represent a relativistic Ul-
rich solution, since the orbit followed by a particular
fluid particle have a hyperbolic Newtonian counter-
part. These solutions are describe in detail in Huerta
& Mendoza (2007) and correspond to the exact rel-
ativistic solutions to the problem discussed by Lee
& Ramirez-Ruiz (2006) and solved numerically us-
ing a Paczynsky & Wiita (1980) pseudo–Newtonian
potential.

3. DISCUSSION

The work presented here represents a general rel-
ativistic approach to the ballistic Newtonian accre-
tion flow first proposed by Ulrich (1976). The main
features (see for example Figure 2) of the accre-
tion flow are still valid with the important conse-
quence that the radius of the equatorial accretion
disk grows from its Newtonian value for the Ulrich
case up to infinity in the extreme ultra–relativistic
situation, for which the angular momentum is twice
the Schwarzschild radius. As a consequence, the par-
ticle number density diverges on the border of the
disk only for the Newtonian case described by Ul-
rich. As Figure 1 shows, the divergence of the par-
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20 MENDOZA & HUERTA

Fig. 1. A characteristic plot of particle number density

n measured in units of n0, as a function of the radial dis-

tance R measured in units of r∗ evaluated in the equator,

i.e. for which the polar angle θ = π/2. This particular

plot correspond to α = 10−1.

ticle number density at the border of the disk dis-
appears as soon as α moves away from a null value.
Furthermore, it does so in such a way that the den-
sity of the disk varies very smoothly throughout the
disk as α → 1/8.

This is due to the fact that, when the radius of
the disk grows, the particle number density on it
rearranges in such a way that it smoothly softens as
the α → 1/8. Figure 2 shows density isocontours for
different values of the parameter α.
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