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DYNAMICAL FRICTION FORCE EXERTED ON SPHERICAL BODIES

O. Esquivel1,2 and B. Fuchs1

RESUMEN

Siguiendo un enfoque mecánico-ondular calculamos la fuerza de arrastre ejercida por un sistema homogéneo e
infinito de estrellas de fondo sobre un pertubador mientras éste se mueve a través del sistema. Recuperamos
la fórmula clásica para la fuerza de fricción (FF) derivada por Chandrasekhar, pero con un logaritmo de
Coulomb modificado. Al estimar la FF ejercida sobre una esfera de Plummer y un perturbador que posee un
perfil tipo Hernquist, consideramos un intervalo de modelos que abarca toda distribución plausible de satélites
galácticos. Se muestra que la configuración del perturbador afecta únicamente la forma exacta del logaritmo
de Coulomb. Tal logaritmo converge a pequeñas escalas porque los encuentros entre la part́ıcula de prueba y
las estrellas de fondo, cuyos parámetros de impacto son inferiores al tamaño del perturbador masivo, resultan
ineficientes. Comprobamos aśı los resultados previos basados en la aproximación de impulso de pequeñas
deflecciones angulares.

ABSTRACT

Following a wave-mechanical treatment we calculate the drag force exerted by an infinite homogeneous back-
ground of stars on a perturber as it makes its way through the system. We recover Chandrasekhar’s classical
dynamical friction (DF) law with a modified Coulomb logarithm. We take into account a range of models
that encompasses all plausible density distributions for satellite galaxies by considering the DF exerted on a
Plummer sphere and a perturber having a Hernquist profile. It is shown that the shape of the perturber affects
only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the
test and field stars with impact parameters less than the size of the massive perturber become inefficient. We
confirm this way earlier results based on the impulse approximation of small angle scatterings.

Key Words: galaxies: kinematics and dynamics — methods: analytical

1. INTRODUCTION

The process of dynamical friction (DF) is one
of the most classical and fundamental problems en-
countered in the description of the evolution of al-
most all astrophysical systems. From the critical mo-
mentum exchange in a protoplanet-protoplanetary
disk set up, passing through the problem of satel-
lites in galaxies to galaxies in large clusters, proper
understanding of DF is a prerequisite to more am-
bitious attempts at constructing physically justified
models.

In his seminal paper Chandrasekhar (1943) en-
visaged the scenario of a sequence of consecutive
gravitational two-body encounters of test and field
stars in order to calculate the drag force (cf. Hénon
1973 for a modern presentation). In particular, ap-
plication of DF to calculate the rate of a sinking
satellite has received special attention, and efforts

1Astronomisches Rechen-Institut am Zentrum für As-
tronomie der Universität Heidelberg, Mönchhofstraße 12-14,
69120 Heidelberg, Germany.

2Fellow of International Max-Planck Research School for
Astronomy and Cosmic Physics, Heidelberg (esquivel@ari.uni-
heidelberg.de).

have been made to include more general background
distributions. However, as for the perturber itself,
White (1976) has been the only one to consider a
more realistic finite-size perturber to compute ana-
lytically the DF based on an impulse-approximation
approach. His main result was a modification of the
Coulomb logarithm so that it does not diverge any-
more at small scales, because gravitational encoun-
ters at impact parameters smaller than the size of
the perturbing body become ineffective. Here we
rigorously calculate the drag force exerted on differ-
ent bodies following the approach of both Marochnik
(1968) and Kalnajs (1972) who determined the “po-
larization cloud” created in the background medium
as a massive object was making its way through the
system. This method can be simply understood as
linear and angular momentum exchange in stellar
systems (Lynden-Bell & Kalnajs 1972; Dekker 1976;
Tremaine & Weinberg 1984; Fuchs 2004), and has
been extensively used in plasma physics (cf. Stix
1992). It is shown in § 4 below that the shape of the
perturber affects only the exact form of the Coulomb
logarithm. As concrete examples we calculate the
drag force exerted on a Plummer sphere and on a
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84 ESQUIVEL & FUCHS

sphere with the density distribution of a Hernquist
(1990) profile, respectively, and compare them with
the drag force exerted on a point mass.

2. A WAVE-MECHANICAL TREATMENT

We assume an infinite homogenous distribution
of field stars on isotropic straight-line orbits. The
response of the system of background stars to the
perturbation due to a massive perturber is deter-
mined by solving the linearized Boltzmann equation

∂f1

∂t
+

3
∑

i=1

vi
∂f1

∂xi
− ∂Φ1

∂xi

∂f0

∂vi
= 0 , (1)

where Φ1 denotes the gravitational potential of the
perturber and f1 and f0 are the perturbed and un-
perturbed distribution functions of the field stars in
phase space. By Fourier-transforming both the per-
turbations f1 and the potential Φ1 (whose forms are
fω,k; Φω,k exp i[ωt + k · x] ; where ω and k denote
the frequency and wave vector of the Fourier compo-
nents) the solution of Boltzmann equation is greatly
facilitated. Without loss of generality the spatial
coordinates xi and the corresponding velocity com-
ponents vi can be oriented with one axis parallel to
the direction of the wave vector. The Boltzmann
equation (1) takes then the form

ωfω,k + υkfω,k − kΦω,k
∂f0

∂υ
= 0 , (2)

with k = |k| and υ denoting the velocity component
parallel to k. Equation (2) has been integrated over
the two velocity components perpendicular to k. In
the following we assume for the field stars always a
Gaussian velocity distribution function, to find the
solution

fω,k = − kv

ω + kυ

nb√
2πσ3

e−
υ
2

2σ2 Φω,k , (3)

where nb denotes the spatial density of the field
stars. Integrating equation (3) over the υ-velocity
leads to the density distribution of the induced po-
larization cloud. This has been calculated here
without taking into account the self-gravity of the
background medium. However, Fuchs (2004) has
shown that in linear approximation the effects of
self-gravity are not important for the dynamics of
the polarization cloud.

3. POTENTIALS OF THE PERTURBING
BODIES

To start with, we consider in our analysis the po-
tential of a point mass, which moves with the velocity

v0 along the y-axis,

Φ1 = − Gm
√

x2 + (y − v0t)2 + z2
. (4)

Its Fourier-Transform can be calculated using for-
mulae (3.754) and (6.561) of Gradshteyn & Rhyzik
(2000) as

Φk = −Gm

2π2

1

k2
e−ikyv0t . (5)

Next, the potential (4) is generalized to

Φ1 = − Gm
√

r2
0 + x2 + (y − v0t)2 + z2

, (6)

which corresponds to an extended body with the
mass distribution of a Plummer sphere (ρ ∝ 1/r3

0(1+

r2/r2
0)

−
5
2 (Binney & Tremaine 1987). The Fourier

transform of a moving Plummer sphere is given by

Φk = −Gm

2π2

r0

k
K1(kr0)e

−ikyv0t , (7)

where K1 denotes the modified Bessel function of
the second kind. As third example we consider a
perturber which has the mass density distribution of
a Hernquist profile (ρ ∝ (r0/r)(r0 + r)−3 (Hernquist
1990). Its gravitational potential is given by

Φ1 = − Gm

r0 + r
. (8)

The Fourier transform of a moving Hernquist sphere
can be calculated using equation (3.722) of Grad-
shteyn & Rhyzik (2000)3 leading to

Φk = −Gm

2π2

1

k2
[1 + kr0 cos (kr0)si (kr0)

−kr0 sin (kr0)ci (kr0)]e
−ikyv0t , (9)

where si and ci denote the sine- and cosine-integrals,
respectively. The model of a Plummer sphere has of-
ten been used in numerical simulations of the accre-
tion and their eventual disruption of satellite galaxies
in massive parent galaxies. Plummer spheres have
constant density cores, whereas numerical simula-
tions of the formation of galactic haloes in cold dark
matter cosmology show that dark haloes may have
a central density cusp (Navarro, Frenk, & White
1997). Thus models of a Plummer or a Hernquist
sphere should encompass the range of plausible mod-
els for satellite galaxies. The density in both models
falls off radially steeper than found in the cold dark
matter galaxy cosmogony simulations. This mimics
the tidal truncation of satellite galaxies in the grav-
itational field of their parent galaxies.

3We use the identity sin kr = −

1

r

∂

∂k
cos kr in equa-

tion (3.722).
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DYNAMICAL FRICTION ON SPHERICAL BODIES 85

4. DYNAMICAL FRICTION

The ensemble of stars is accelerated by the mov-
ing perturber as

< v̇ >= −
∫

d3x

∫

d3vf(x,v)∇Φ1 , (10)

where f denotes the full distribution function f =
f0 + f1. The contribution from f0 cancels out, and
introducing the Fourier transforms we find

< v̇ > = −
∫

d3x

∫

d3v

∫

d3k ikΦk

× ei[ωt+k·x)]

∫

d3k′fk′ei[ω′t+k
′
·x] .(11)

From symmetry reasons the acceleration vector <v̇>
is expected to be oriented along the y-axis. In
equation (11) the frequency ω, and similarly ω′, is
given according to equations (5), (7) and (9) by
ω = −kyv0 − iλ where we have introduced, follow-
ing Landau’s rule, a negative imaginary part, which
we will let go to zero in the following. Moreover,
Φ∗

k
= Φ−k so that the potential is a real quantity.

Equation (11) simplifies to

< v̇ >= (2π)3
∫

d3v

∫

d3k ikΦ−kfke2λt . (12)

Using expression (3) and taking the limit λ → 0 we
get

< v̇ >=
(2π)5/2πnb

σ3

∫

d3k |Φk|2
k

k
kyv0e

−
(kyv0)2

2k2σ2 .

(13)
The Fourier transform of any potential with spher-
ical symmetry depends only on k = |k|. Thus it
follows immediately from equation (13) that indeed
the two acceleration components <v̇x>=<v̇z>= 0 as
anticipated. Only in the direction of motion of the
perturber is there a net effect. According to New-
ton’s third law the drag force exerted on the per-
turber is given by mv̇ = −mb<v̇y> where mb is the
mass of a background particle, so that the drag force
is anti-parallel to the velocity of the perturber. In
order to evaluate the integrals over the wave num-
bers in equation (13) it is advantageous to switch
from Cartesian form kx, ky, kz to a mixed represen-

tation ky, k =
√

k2
x + k2

y + k2
z , arctan(kx/kz), and

we obtain for the deceleration the general result

v̇ = −4πG2mmbnb

v2
0

[

erf

(

v0√
2σ

)

−
√

2

π

v0

σ
e−

v2
0

2σ2

]

lnΛ

(14)

where erf denotes the usual error function. The
Coulomb logarithm is defined as

ln Λ =
4π4

G2m2

∫ kmax

kmin

dk k3|Φk|2 . (15)

In the case of a point mass formula (5) implies
Λ=kmax/kmin. This result was first obtained in this
form by Kalnajs (1972) and is identical to Chan-
drasekhar’s (1943) formula, if m + mb ≈ m. The
Coulomb logarithm diverges in the familiar way both
on small and large scales, i.e., at k−1

max and k−1
min, re-

spectively. The Coulomb logarithm of the dynami-
cal friction force exerted on a Plummer sphere can be
calculated by inserting equation (7) into (15) leading
to

ln Λ = r2
0

∫

∞

kmin

dk k K2
1 (r0k) . (16)

If the Plummer radius r0 shrinks to zero, expres-
sion (16) changes smoothly into the Coulomb loga-
rithm of a point mass, because limr0→0 r0K1(k0k) =
k−1. The integral over the square of the Bessel func-
tions in equation (16) can be evaluated using for-
mula (5.54) of Gradshteyn & Rhyzik (2000),

ln Λ = −

r2

0k2

min

2

[

K2

1 (r0kmin)−K0(r0kmin)K2(r0kmin)
]

,

(17)

which is approximately

ln Λ ≈ −1/2 − ln(r0kmin) , (18)

in the limit of r0kmin � 1. This modified Coulomb
logarithm converges on small scales precisely as
found by White (1976), but still diverges on large
scales. A natural cut-off will be then the size of the
stellar system under consideration. For a perturber
with the density distribution of a Hernquist profile
we find a Coulomb logarithm of the form

ln Λ =

∫

∞

kmin

dk
1

k
[1 + r0k cos(r0k)si(r0k)

− r0k sin(r0k)ci(r0k)]2 . (19)

It can be shown using the asymptotic expansions of
the sine- and cosine-integrals given by Abramowitz &
Stegun (1972) that the integrand in expression (19)
falls off at large k as 4r0(r0k)−5. Thus the Coulomb
logarithm converges at small scales. This is expected
because, although the density distribution has an
inner density cusp, the deflecting mass ‘seen’ by a
field star with a small impact parameter scales with
the square of the impact parameter. At small wave
numbers a Taylor expansion shows that the square
bracket in expression (19) approaches 1 so that we
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86 ESQUIVEL & FUCHS

find a logarithmic divergence of the Coulomb loga-
rithm as in the case of the Plummer sphere. In Fig-
ure 1 we illustrate the Coulomb logarithms of the
Plummer sphere and of a sphere with a Hernquist
density distribution according to equations (17) and
(19) as function of r0kmin. Figure 1 shows clearly
that at a given mass small-sized perturbers experi-
ence a stronger dynamical friction force than larger
ones. Since the cut-off of the wave number at kmin

is determined by the radial extent of the stellar sys-
tem, which corresponds roughly to one half of the
largest subtended wave length λmax = 2π/kmin, we
use actually r0/(λmax/4) as abscissa in Figure 1. For
comparison we have also drawn −ln (r0kmin) in Fig-
ure 1. The insert shows the cumulative mass distri-
butions of both mass models. The half mass radius of
the Hernquist model measured in units of r0 is about
twice that of the Plummer sphere. Thus for a proper
comparison of the drag forces exerted on a Plummer
sphere and a sphere with a Hernquist density pro-
file the dashed line in Figure 1 should be stretched
by a factor of about 2 towards the right. But it is
clear from Figure 1 that the drag force exerted on a
Plummer is always larger that the drag on a sphere
with a Hernquist density profile. This is to be ex-
pected because of its shallower density profile. The
logarithm −ln (r0kmin), although it is the asymp-
totic expansion of the Coulomb logarithms (17) and
(19) for r0kmin → 0, is not a good approximation
at larger r0kmin. There is a systematic off-set rela-
tive to the true Coulomb logarithms which is given
explicitly in equation (18) for the case of the Plum-
mer sphere. It could be argued that perturbers can
be deformed by tidal fields. However, this effect is
expected to be small (a higher order effect). There
is a further effect if the perturbers are gravitation-
ally bound systems themselves like globular clusters
or dwarf satellite galaxies. Such objects can and do
lose mass due to tidal shocking and both effects can
even be of comparable magnitude. Finally, we want
to mention that our analysis can be extended, in a
straightforward way, to anisotropic velocity distribu-
tions of the field stars. Fuchs & Athanassoula (2005)
have shown that the velocity dispersion in the solu-
tion of the Boltzmann equation (3) is replaced by an
effective velocity dispersion which depends on the
semi-axes of the velocity ellipsoid and its orienta-
tion relative to the wave vector k. We intend to
present our results in a forthcoming paper (Esquivel
& Fuchs, in preparation).

O.E. gratefully acknowledges financial support
by the International-Max-Planck-Research-School

Fig. 1. Coulomb logarithms of the Plummer sphere
(solid line), and of a sphere with a Hernquist den-
sity profile (dashed line). The dotted line indicates
−ln (2πr0/λmax). r0 is the radial scale length of the
spheres and λmax the upper cut-off of the wavelength of
the density perturbations (see text). The inset shows
the cumulative mass distributions of the Plummer and
Hernquist models.

for Astronomy and Cosmic Physics at the Univer-
sity of Heidelberg.
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