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OSCILLATIONS AND HEATING OF THE SOLAR CORONA

C. A. Mendoza-Briceño,1 A. Parravano,1 and M. H. Ibáñez S.1

RESUMEN

En este trabajo discutiremos las observaciones, consecuencias y modelamiento de las oscilaciones en lazos
coronales, su amortiguamiento y su papel para proveer diagnósticos del plasma coronal, aśı como su relación
con el problema fundamental del calentamiento de la corona.

ABSTRACT

In this paper we will discuss the observations, consequence and modelling of coronal loops oscillations. These
oscillations and their damping are of fundamental importance, because they can provide diagnostics of the
coronal plasma as well as insight of their role on the fundamental problem of the coronal heating.

Key Words: MHD — Sun: corona — Sun: oscillations

1. INTRODUCTION

Recent observations by high-resolution space
imaging telescopes and spectrometers on board the
SOHO and TRACE spacecrafts have delivered data
of unprecedented quality that support the view of
significant magnetohydrodynamic (MHD) wave ac-
tivity in the solar corona. In response to this, coro-
nal loop oscillations have become a subject of in-
creasing theoretical interest. In particular, MHD
waves, fast or slow, are natural carriers of energy
and so they are likely sources for heating of the coro-
nal plasma and for solar wind acceleration. They
are also potentially valuable sources of seismic in-
formation, providing a coronal seismology (Roberts,
Edwin, & Benz 1984; Nakariakov & Ofman 2001).
There are three basic branches of solutions of the dis-
persion relation for propagating and standing MHD
waves: the slow-mode branch (with acoustic phase
speeds), the fast-mode branch and the Alfvén branch
(with Alfveńic phase speeds). Furthermore, each
branch has a symmetric and asymmetric solution,
termed the sausage and kink modes (Roberts, Ed-
win, & Benz 1984). All of these MHD oscillation
modes have been detected with imaging observations
in recent years: transverse fast kink-mode oscilla-
tions with TRACE (Aschwanden et al. 1999; Nakari-
akov et al. 1999), longitudinal (slow magnetoacous-
tic) modes with SUMER (Wang et al. 2002a,b; Of-
man & Wang 2002), and fast sausage mode oscilla-
tions, probably with the Nobeyama radioheliograph
(Asai et al. 2001). The Solar Ultraviolet Measure-
ments of Emitted Radiation (SUMER) spectrometer
on board the SOHO satellite detected large Doppler

1Centro de F́ısica Fundamental, Facultad de Ciencias, Uni-
versidad de los Andes, Mérida, Venezuela (cesar@ula.ve).

shift velocities with strong oscillatory damping in hot
(T > 6 MK) coronal loops (Kliem et al. 2002; Wang
et al. 2002a,b). These oscillations were interpreted
as signatures of standing slow or kink magnetosonic
waves excited impulsively in the loops (Ofman &
Wang 2002). Moreover, Sakurai et al. (2002) pre-
sented a time sequence over 80 min of coronal green-
line spectra obtained with a ground-based corona-
graph at the Norikura Solar Observatory. They also
detected Doppler shift oscillations and they have in-
terpreted them as propagating, rather than standing,
slow-mode MHD waves.

The relevance of observed MHD oscillations and
propagating wave phenomena for coronal heating has
been estimated (Aschwanden 2004), deriving first
the energy fluxes that are contained in MHD waves
and compare them with the radiative and conductive
losses in the corona. Aschwanden (2004) found that
MHD oscillations and waves with Alfvénic phase
speeds have an energy flux that is comparable with
coronal losses, while MHD oscillations and waves
with acoustic phase speeds contain insufficient en-
ergy to balance coronal losses. Also dissipation of
Alfvén waves can possibly account for coronal heat-
ing in coronal holes as well as in active regions, but
their detection can only be facilitated by line broad-
ening or by fast-mode MHD oscillations in resonant
loops. Acoustic waves are easier to detect based
on Doppler shifts and density modulation, but they
seem to be irrelevant for coronal heating.

2. MODEL AND GOVERNING EQUATIONS

Since the plasma dynamics in a coronal loop is
dominated by the magnetic field, a usual assumption
is made, i.e. the plasma motion takes place primarily
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8 MENDOZA-BRICEÑO, PARRAVANO, & IBÁÑEZ

along the magnetic field lines, which in turn deter-
mines the loop geometry. The energy conservation
reads as

ρ
dT

dt
= − µ̄(γ − 1)

Rg
×

[

p
∂v

∂s
+ ρ2Q(T ) − H − ∂

∂s

(

κ
∂T

∂s

)

− 4

3
η

(

∂v

∂s

)2
]

,

(1)
where t is time, s denotes the position along a loop of
constant cross-section, ρ is the plasma mass density,
v is the fluid velocity, T is the plasma temperature,
p is the gas pressure, Q(T ) = χT α is the optically
thin radiation-loss function with χ and α the Hild-
ner’s (1974) cooling coefficient and exponent, respec-
tively, H is the coronal heating function, γ(= 5/3) is
the ratio of specific heats, µ̄ is the mean molecular
weight, κ = 10−6T 5/2 ergs cm−1s−1K−1 is the coef-
ficient of thermal conductivity parallel to the mag-
netic field, and η is the coefficient of compressive
viscosity (Braginskii 1965). Equation (1) together
with the continuity and momentum equations are
closed by assuming p = RgρT/µ̄, where Rg is the
gas constant.

3. RESULTS AND DISCUSSION

3.1. Oscillating coronal loops

The aim of this section is to quantify the effects
of stratification on damping of the Doppler shift os-
cillations observed by SUMER in hot (T > 6 MK)
coronal loops. To do so, we start from the same
loop parameters used by Ofman & Wang (2002),
who performed similar calculations of the damping
of slow MHD waves in hot loops by neglecting the
effects of solar gravity. In particular, we choose a
one-dimensional loop configuration of semi-circular
shape, constant cross-sectional area, and total length
L = 400 Mm (≈ 0.575R�), with an initial uniform
temperature (T = 6.3 or 8.0 MK) distribution. For
the non-stratified models, an initial uniform density
(= 5.0× 108 cm−3) distribution is used. As outlined
by Ofman & Wang (2002), these initial parameters
are motivated by SUMER and Yohkoh/soft X-ray
telescope (SXT) observations of hot loops in the up-
per solar atmosphere. With this choice, the coef-
ficient of compressive viscosity takes values of η ≈
9.58 g cm−1 s−1 for T = 6.3 MK and ≈ 17.40 g cm−1

s−1 for T = 8.0 MK, while the coefficient of thermal
conductivity is κ ≈ 9.96 × 1010 ergs cm−1 s−1 K−1

for T = 6.3 MK and ≈ 1.81×1011 ergs cm−1 s−1 K−1

for T = 8.0 MK.
Loop oscillations in the form of standing slow

magnetosonic waves are introduced by allowing the

Fig. 1. Time evolution of the wave velocity at s =
l0 = 0.35L for a loop model with T = 8.0 MK and
L = 400 Mm. Waves in a stratified loop (solid line) are
compared with those in a non-stratified medium (dashed
line) for an initial wave-velocity amplitude of 84 km s−1.
The fits of the exponential wave damping are shown with
the dot-dashed and triple-dot-dashed curves for the non-
stratified and stratified loop, respectively.

initial velocity to oscillate with position along the
loop with a prescribed constant amplitude v0. In or-
der to check the ability of the code to reproduce the
results obtained by Ofman & Wang (2002), we first
consider initial wave-velocity amplitudes of 20 and
87 km s−1 in a non-stratified loop model and then
compare the results for the same parameters in the
stratified case. Figures 1 and 2 display the resulting
time evolution of the wave velocity and density at a
fixed distance l0 = 0.35L(≈ 0.20 R�) from the left
footpoint at s = 0 for the case in which T = 8.0
MK and v0 = 87 km s−1. The solid line depicts
the wave evolution in the stratified loop (i.e., with
gravity included), while the dashed line shows the
same evolution with no stratification (i.e., with no
gravity). The fits of the exponential decay of the
amplitude v0 exp(−t/td), where td is the dissipation
time, are also shown in Figure 1 with the dot-dashed
(no stratification) and triple-dot-dashed (stratifica-
tion) curves. In the stratified case, the wave velocity
has a period of ≈ 1163 s (≈ 19.4 min) and a de-
cay time of about 1231 s (≈ 20.5 min). For com-
parison, the wave in the non-stratified loop has a
slightly shorter period (≈ 1153 s ≈ 19.2 min) and
a longer decay time (≈ 1396 s ≈ 23.3 min). In
both cases, the wave velocity almost completely dis-
sipates after about 4000 s (≈ 66.7 min), with the
wave in the stratified loop reaching smaller ampli-
tudes (v ≈ 2.72 km s−1 by 3601 s) faster than in
the non-stratified case (v ≈ 4.10 km s−1 by 3553 s).
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OSCILLATIONS AND HEATING 9

Fig. 2. Same as Fig. 1 but for the wave density.

The time evolution of the density perturbations cal-
culated as δχ/χ = [χ(s = l0, t) − χi]/χi, where χi

denotes the initial (t = 0) value of ρ at s = l0, is
shown in Figure 2.

We see that the density oscillation exhibits an
1/4-period phase difference compared to the velocity.
This latter result supports the observational find-
ing that for standing slow-mode waves in hot loops,
the intensity fluctuations lag the Doppler shifts by a
quarter period (Wang et al. 2003b). From Figure 1
we also see that the waves dissipate on essentially the
same timescale independently of whether gravity is
included or excluded. In the cooler (T = 6.3 MK)
loops, the period and decay time of the slow waves
are longer compared to those in the hotter (T = 8.0
MK) models.

In addition, the predicted ratio of decay time
to period is ∼ 1.6 for the T = 6.3 MK stratified
and non-stratified loop models, whereas td/P ∼ 1.1
and 1.2 for the stratified and non-stratified T = 8.0
MK models, respectively. These ratios are within
the range of values (0.3–2.1) inferred observationally
by Wang et al. (2003b) on the basis of data for 54
Doppler shift oscillations associated with 27 flux en-
hancement events of hot plasma.
The result that the decay time becomes shorter at
higher temperatures is consitent with thermal con-
duction being the dominant mechanism for damp-
ing of coronal loop oscillations. In particular, in the
stratified case when T = 6.3 MK the wave velocity
has a period of ≈ 1306 s (≈ 21.8 min) and a decay
time of ≈ 2062 s (≈ 34.4 min) for an initial wave
amplitude of 87 km s−1. These results compare fa-
vorably with the period (∼ 16.8 min) and decay time
(∼ 36.8 min) measured by Wang et al. (2003a) for
one Doppler shift oscillation produced by an M-class
flare and recorded in an Fe XIX line by SUMER in

Fig. 3. Dependence of the decay time td on loop temper-
ature T , as obtained from two independent sequences of
calculations with fixed loop length (400 Mm) and vary-
ing temperatures from T = 6.3 to 8.0 MK. The solid
and dashed lines correspond to v0 = 87 and 20 km s−1,
respectively.

a loop with T = 6.3 MK and length L = 191 Mm.
By about 4016 s the velocity at s = l0 is ≈ 5.75 km
s−1, corresponding to approximately 8% of its value
at t = 0. As expected, this amplitude is higher than
the 4% value found for the hotter loop model at a
comparable evolution time.
While the above predicted periods and decay times
are toward the intermediate (T = 8 MK) and up-
per (T = 6.3 MK) parts of the range of values ob-
served by SOHO in hot coronal loops, we find that
the main effect of stratification is to reduce the dis-
sipation time of slow-mode waves by ∼ 10 − 20%
compared to the non-stratified models.

We now study the variation of the decay time
of standing slow-mode waves with temperature and
total loop length in stratified hot loop models. In
Figure 3 the damping time as a function of the tem-
perature is shown for v0 = 20 (dashed line) and 87
km s−1 (solid line), as obtained for two separate se-
quences of model calculations with fixed loop length
(400 Mm) and varying temperatures from T = 6.3
to 8.0 MK.

We see that the decay time decreases linearly
with temperature in stratified hot loops. It is evi-
dent that at any given temperature the decay time
shortens for lower wave amplitudes. When T = 6.3
MK the damping time for v0 = 87 km s−1 is about
300 s longer than when v0 = 20 km s−1. This dif-
ference reduces to about 60 s when the loop tem-
perature is increased to T = 8.0 MK. Clearly, this
occurs because the size of the wave amplitude affects
the slope of the linear variation in the sense that the
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10 MENDOZA-BRICEÑO, PARRAVANO, & IBÁÑEZ

higher is the value of v0, the faster is the decrease
of the decay time with temperature. As a conse-
quence, in hotter loops (T ≥ 8.0 MK), slow MHD
waves of differing amplitudes may have comparable
decay times due to the increasing dissipative effects
of thermal conduction at such high temperatures.

The dependence of the decay time on loop length
was also studied for four separate sequences of model
calculations with varying length from 100 to 400 Mm
and fixed temperature and wave-velocity amplitude.

In general, as the loop length is increased, the de-
cay time of slow magnetosonic waves also increases.
The increase of the decay time with length is seen
to occur at a much faster rate when T = 6.3 MK
and v0 = 87 km s−1. When T = 8.0 MK, the
decay time becomes essentially independent of the
wave amplitude for the range of loop lengths con-
sidered. We also noted that for all sequences the in-
crease of td with length was almost linear, which was
expected because for standing slow magnetosonic
waves P ≈ 2L/cs (Roberts et al. 1984), where cs

is the sound speed. This approximate linear depen-
dence of the period on loop length has also been
found to match the observed periods rather well
(Wang et al. 2003a,2003b). The fact that at higher
temperatures the dissipation time of oscillations be-
comes shorter is again indicative of the overwhelm-
ing dissipative effects of thermal conduction in the
hottest loops. Moreover, the evidence that for all se-
quences the shortest decay times occur in the small-
est loops (of length 100 Mm) plays also in favor of
thermal conduction as the primary mechanism for
slow-mode wave dissipation.

3.2. Intermittent coronal loop oscillations

Mendoza-Briceño, Sigalotti, and Erdelyi (2005,
hereafter MSE05), in their study of multiple spatio-
temporal impulsive loop heating found that with a
large number of pulses, having a fully random spatio-
temporal distribution, the plasma stays at coronal
temperatures during the impulsive heating stage.
Variations in the randomness of the heat releases
produced qualitatively similar evolutions, differing
mainly in the spatio-temporal distribution of local-
ized thermal bumps that appear randomly along the
hottest loop segments. The model calculations also
predicted the occurrence of sporadic and very rapid
temperature depressions near the loop apex, which
are always accompanied by equally rapid rises of
the apex density. These depressions may involve
strong temperature variations, most of them from
∼ 1.5 × 106 down to ∼ 104 K, which may last from
about 3 to 10 min, and their number may be sen-

sitive to the details of the spatio-temporal distribu-
tion of the microscale heating. MSE05 concluded
that this behaviour may be related to the observed
rapid time variability of coronal loops inferred from
SoHO-CDS observations in active regions of the solar
atmosphere (Kjeldseth-Moe & Brekke 1998; Schri-
jver 2001). Moreover, when the pulses are less con-
centrated near the loop’s footpoints, the evolution
produces hotter loops and progressively less flat tem-
perature profiles in the upper parts of the loop along
with an appreciably reduced number of the temper-
ature depressions. This latter feature is consistent
with the observational lack of strong variability at
very high coronal temperatures (Kjeldseth-Moe &
Brekke 1998; Schrijver 2001).

Here we discuss the oscillatory motions that are
generated in the loop by random energy releases. For
this purpose the time-distance density contour is pre-
sented in Figure 4. The panels of Figure 4 show the
dynamic evolution of the plasma temperature, den-
sity and velocity (top, second and third panels of
Figure 4) as well as the corresponding apex density
and velocity (Figure 4 in the bottom panel).

3.3. Randomly driven global coherent oscillating
pattern

Oscillatory motions are clearly visible as a series
of light and dark bands (dark features indicate higher
densities) on the density time-distance plot (second
panel of Figure 4). Similar features can be seen on
the velocity time-distance plot (third panel of Fig-
ure 4). On a movie-presentation of these data one
can observe plenty of travelling acoustic waves dur-
ing the entire evolution due to the random injections
of pulses. Of course, the most interesting question is
whether these random motions could manifest, even
intermittently, in coherent dynamical signals of loop
response that may be observable. One obvious can-
didate of such coherent apparent response would be
the presence of standing waves. In what follows we
investigate whether the coherent response in Fig-
ure 4 could be standing waves. In order to estab-
lish the nature of these oscillations one can analyse
the variations of the relation between density and
velocity at various locations of the loop. Inspecting
Figure 4 (second and third panels) one can identify
in-phase (or close to it) responses as coherent dark or
light bands (second panel of Figure 4), e.g. between
t=600–1200 s. Although the density response is in-
termittent, it seems to be in phase along the entire
loop, while the corresponding velocity does not show
a clear indication of the standing wave behaviour. It
can be shown theoretically, that, for standing waves
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OSCILLATIONS AND HEATING 11

Fig. 4. Dynamical evolution of the temperature (upper
panel), density (second panel) and velocity (third panel)
along the loop as a function of coordinate s. The lower
panel corresponds to the apex density and velocity as a
function of time.

in a finite length, uniform magnetic flux tube there
has to be a quarter phase shift between the veloc-
ity and density. The considered loop is stratified
and non-isothermal. However, it can still be approx-
imated by a uniform loop and one should expect, for
standing waves, a quarter period phase shift (or close
to it!) between density and velocity. The bottom
panel of Figure 4 shows the time series of velocity
and density at the apex point of the loop. The apex
point is arbitrarily chosen, without any loss of gen-
erality. The velocity and density time series clearly
show a phase shift of the order of P/4, where P is
the period involved. The actual period will be estab-
lished from the wavelet analysis of the density time
series (see the top panel of Figure 5). One impor-
tant feature in the panel of Figure 5 is the sporadic
appearance of density rises that also correspond to
temperature drops. Note, that the phase shift in Fig-
ure 4 (bottom panel) is sometimes close to a quarter
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Fig. 5. (a) Variation of the summit density with time
for a loop length L = 10 Mm and pulses injected over
segments of length 0.1 L from the loop’s footpoints. (b)
Wavelet power analysis of the summit density in (a).

period though negative (e.g. between t=1400–2000
s). However this apparent contradiction can be re-
solved because the direction of velocity is defined
arbitrarily. By introducing a new coordinate system
with opposite positive direction along the loop, the
phase shift will be positive again. We conclude, that,
so far the calculated density and velocity oscillations
could be intermittent standing waves set up by ran-
dom energy releases.

Next, we study the wavelet of the density time se-
ries. The wavelet power spectrum (WPS; Torrence &
Compo 1998) of the apex density time series is shown
in the bottom panel of Figure 5. The wavelet confi-
dence level is of 95%. The power spectrum indicates
several interesting features. The WPS clearly shows
various coherent global periodicities in the evolution
of density as a result of the response of the medium
to an impulsive energy release.
A clear band of wavelet power above the confidence
level, within the cone of influence (COI), and, cen-
tered around a period of 550 s is found. This some-
what long period can be driven by internal gravity
waves. The period of such waves can be estimated by
the inverse of the cutoff frequency Ω = (γg�/2Cs).
Estimates for the considered simulated loop give val-
ues of the order of 520 s which matches well with the
value obtained from the wavelet analysis.
Figure 5 also shows that a series of beads or periodic
patterns at around 900 s, 1800 s, 2400 s and 3600 s of
the evolution appear with a dominant period of or-
der of P = 150− 220 s. These patterns are bounded
within a time interval of approximately 600 s in-
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12 MENDOZA-BRICEÑO, PARRAVANO, & IBÁÑEZ

dicating the appearance of wave packets similar to
those produced by interference. Recently, McIntosh
& Smillie (2004) used wavelet transforms to study
the characteristic time scales of chromospheric os-
cillation wave packets that are observed in Transi-
tion Region and Coronal Explorer (TRACE) ultra-
violet continuum image time series. Using several
data sets, they investigated the statistical, spatial
and temporal intermittence of the number, duration,
mean frequency, and delay (wait time) between wave
packets in the time series data. In our simulations,
we observe these types of wave packets and the same
terminology could be used. The periods involved for
the generation of these interference patterns cannot
be resolved with wavelet analysis, instead we have
used the Lomb-Scargle periodogram, a modified ver-
sion developed by Carbonell & Ballester (1991) to
compute these periods. These close periods are ob-
tained and are of the order of 183 and 223 s (∼ 5
mHz).
We also investigated how the effect of changing the
length of the loop segment, ∆L, where the random
energy releases occur.

Increasing the size ∆L of the loop segment along
which the pulses are randomly distributed but keep-
ing fixed the other parameters we observe a sim-
ilar oscillatory pattern as in Figure 4. This time
the maximum of the dominant period is slightly de-
creased to ≈ 145 s. Computing a long time series
evolution (up to 12000 s) one finds that the pack-
ets are more frequent than for smaller ∆L. If ∆L is
further increased, say to 0.5 L, i.e. the pulses were
distributed randomly along the whole loop (though
these pulses are still randomly distributed in space
and time), the oscillatory patterns are even more
frequent in the entire evolution. It was seen that
the dominant periods are even smaller than in the
previous cases of shorter segment of random energy
distribution. At this stage one can conclude, that
distributing the pulses more widely in the whole
loop produce oscillations at a certain period that is
around 120 seconds.

We recall the simple estimate equation derived
by Roberts et al. (1984) that relates for standing
waves the period, loop length, and, wave speed for
the fundamental mode

P =
2L

Cs
=

2L

1.18 × 104
√

T
, (2)

where Cs is the speed of sound and T measured in
MK while L is in centimeters. If we substitute the
loop length L = 10 Mm and the average temperature
of 1 MK for the whole evolution for the simulated

case with ∆L/L = 0.1 we obtained a period of the
order of 170 s. Dı́az (2005, private comm.) derived
a simple wave equation for the slow modes of coro-
nal structures using stretching coordinates (Roberts
2005) to decouple them from the rest of the MHD
modes. He obtained the corrected periods with re-
spect to the results of the homogeneous tube calcu-
lated with equation (2) of the order of 175.3 s. With
these results, one can see that improving the model
by including more detailed physics improves the es-
timated period.

We would like to thank the CDCHT of the Uni-
versidad de los Andes for financial support (C-1271-
04-05-A).
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