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DYNAMICS OF THERMAL FRONTS

M. H. Ibáñez S.1

RESUMEN

El modelo de fuente puntual de Zel’dovich et al. (1985) para flujos adelante y atrás de un frente de combustión
se generaliza a frentes térmicos (de calor y fŕıos) arbitrarios que se propagan en plasmas no-homogéneos. En
particular, se analizan soluciones auto-similares del tipo potencias.

ABSTRACT

The point source model proposed by Zel’dovich et al. (1985) for analyzing the flows ahead and behind a spherical
flame front is generalized to study arbitrary thermal (heat and cooling) fronts propagating in nonhomogeneous
plasmas. In particular, self-similar power-like solutions are analyzed.

Key Words: plasmas

1. INTRODUCTION

At advanced nonlinear stages of thermal instabil-
ity in optically thin plasmas, a two-phases medium
develops with an interface zone, where, in addition
to strong temperature gradient (where the heat con-
duction goes into play), interchange of mass between
the cold and hot phases occurs. Mass exchange be-
tween these two phases through evaporation of cold
clouds and condensation of hot intercloud gas can
play a key role in the global dynamics of the in-
terstellar medium (McKee & Begelman 1990), in
star formation (Ibáñez & Parravano 1983; Ibáñez &
Bessega 2000), in thermonuclear flame-like fronts at
late stage of evolution of Type Ia supernovae explo-
sions (Bell et al. 2004), in dynamics of cooling flows
(Churazov & Inogamov 2004), in tokamak plasmas
(Tokar 2002). Therefore, the understanding of the
dynamics of thermal fronts is an important problem
in astrophysical as well as in laboratory plasmas. In
the present work the point source model proposed
by Zel’dovich et al. (1985) for analyzing the flows
ahead and behind a spherical flame front is gener-
alized to study arbitrary thermal fronts propagating
in nonhomogeneous plasmas.

2. SELF-SIMILAR EQUATIONS

In spherical symmetry self-similarity demands
that the physical variables can be written in the form

p = ρ0(t)Ṙ
2(t)f(ξ) ρ = ρ0(t)g(ξ) u = Ṙ(t)v(ξ) ,

(1)
where Ṙ(t) = dR(t)/dt and ξ = r/R(t). As usu-
ally, if one chooses R(t), ρ0(t) as the basic scales,
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then Ṙ(t) and ρ0(t)Ṙ
2(t) can be taken as velocity

and pressure scale, respectively. Therefore, the mass
motion and energy equations reduce to

R

ρ0Ṙ

dρ0

dt
+

dv

dξ
+ (v − ξ)

d

dξ
ln g + 2

v

ξ
= 0 , (2)

R

Ṙ2

dṘ

dt
+ (v − ξ)

dv

dξ
+

1

g

df

dξ
= 0 , (3)

ρ0

Ṙ2

R
f [

R

Ṙ

d

dt
ln

Ṙ2

ργ−1

0

+ (v − ξ)
d

dξ
ln

f

gγ
] = (γ − 1)Q ,

(4)
where Q is the heat loss function.

2.1. Heat Fronts

For heat fronts α = ρ0

1
/ρ0

2
> 1, where ρ0

1
and

ρ0

2
refer to the densities ahead and behind the heat

front, respectively and assuming the Zel’dovich et
al. solution ahead the spherical front, u0

1
= α1ub/ξ

2,
i.e., Ṙ(t) = ub, v(ξ) = α1/ξ

2 and α1 = (α −

1)/α from equation (2) follows that g(ξ) = 1 +
[

(1 − α1)/(ξ
3 − α1)

]β/3

if β 6= 0and g(ξ) = 1 if
β = 0 . Additionally, ρ0(t) = ρ∗(t∗/t)

β , where ρ∗ is
a constant. Note that when β = 0 (case considered
in Zel’dovich et al. 1985) ρ0

1
= ρ∗. The reason by

which for β > 0, g(ξ) is chosen of the above form is
to assure that when ξ → ∞ the density remains 6= 0,
i.e., ρ∞ = ρ∗, otherwise ρ → 0 and T → ∞ when
ξ → ∞ which is physically meaningless.

From the motion equation (3) one obtains the so-
lution for f(ξ) and the solution for the dimensionless
pressure (p0

1
− p∞)/ρ∞u2

b = (t∗/t)
βf (ξ), where p∞

and ρ∞ are the gas pressure and density at ξ → ∞,
respectively.
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2.2. Cooling Fronts

The analysis made in the former subsection can
be straightforwardly expanded to spherical cooling
front. In consequence, condensation of the gas in
the spherical cool front acts as a sink (instead of
a source, as in the flame problem) for the gas at
r > R(t) (region 1 – the hot medium), the velocity
can be written as

u
0

1
= ∇ϕ0

1
= −

1 − α

α
u3

b

t2

r2

r

r
, r > R , (5)

therefore for cooling fronts α < 1 and the flow is con-
verging. On the other hand, from equation (5) fol-
lows that the speed of the flow ahead the cool front
becomes v(ξ) = −α1/ξ

2 where α1 = (1−α)/α, i.e. as
that corresponding to a flame front, but with a con-
verging instead of diverging flow and stronger inten-
sity. Henceforth, integrating the continuity equation,
g(ξ) = 1 if β = 0 and g(ξ) = 1 + (α1 + ξ3)−β/3 if
β 6= 0 and from the motion equation (3) one obtains
the quadrature for f (ξ) as well as the dimensionless
presure p0

1
/ρ∗u

2

b .
Figure 1a are plots of the dimensionless pres-

sure as functions of ξ for cooling fronts with β = 0
and with front compressions α = 10−2 (solid lines),
5× 10−2 (dashed lines), 0.1 (dashed-point lines) and
0.5 (dotted lines). Contrary to the heat front, where
the pressure increases when ξ → 1, at the cooling
front a deep well of pressure is formed close to the
boundary ξ = 1 which produces the converging flow.
The corresponding temperature also decays towards
ξ → 1. Due to the fact that the density is a con-
stant when β = 0, it is clear that the tempera-
ture profile follows that of the pressure (Figure 1a).
Figure 1b corresponds to the distribution of tem-
perature when β = 1. The depth of the well of
pressure as well as the temperature increases with
α. In conclusion, the point source model proposed
by Zel’dovich et al. (1985) for analyzing the flows
ahead and behind a spherical flame front is gener-
alized to study arbitrary thermal fronts propagating
in nonhomogeneous plasmas. The pressure ahead of
heat fronts in non-homogeneous plasmas shows sim-
ilar behavior as in the Zel’dovich model. However,
for densities decaying from the front, a maximum
of the temperature ahead (but close to) the front
appears. Cooling fronts instead, generate gas sinks
leaving a deep pressure (and temperate) well with
minimum pressure (and temperature) at the cooling
front. The above qualitative results hold, regardless
the self-similar power or rates values.

Fig. 1. The dimensionless pressure (a) and temperature
(b) as functions of ξ for β = 0 and β = 1, respectivelly,
for cooling fronts with different α values.
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Ibáñez, M. H., & Bessega, M. C. 2000, ApJ, 531, 838
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