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STATISTICS OF CENTROIDS OF VELOCITY

A. Esquivel1 and A. Lazarian2

RESUMEN

Hacemos un resumen del uso de estad́ısticas de mapas de centroides de velocidad para obtener información de
la turbulencia del medio interestelar a partir de observaciones. Los centroides de velocidad han sido usados por
mucho tiempo para obtener información de las propiedades de escalamiento de la velocidad turbulenta en el
medio interestelar. Mostramos que, mientras que los mapas de centroides de velocidad son útiles para el estudio
de turbulencia subsónica, no lo son para turbulencia supersónica, porque son influenciados por fluctuaciones
de densidad. Mostramos también que para turbulencia sub-Alfvénica (tanto subsónica como supersónica) las
estad́ısticas de dos puntos (como las funciones de correlación o los espectro de potencias) muestran anisotroṕıa.
Esta anisotroṕıa puede ser aprovechada para determinar la dirección del campo magnético proyectado en el
plano del cielo.

ABSTRACT

We review the use of velocity centroids statistics to recover information of interstellar turbulence from ob-
servations. Velocity centroids have been used for a long time now to retrieve information about the scaling
properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to
study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they
are highly influenced by fluctuations of density. We show also that for sub-Alfvénic turbulence (both supersonic
and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy
can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

Key Words: ISM: general — ISM: structure — MHD — radio lines: ISM — turbulence

1. INTRODUCTION

It is well known that the interstellar medium
(ISM) is turbulent. Such turbulence is magnetized
and expands over several scales, ranging from au to
kpc (Larson 1992; Armstrong, Rickett, & Spangler
1995; Deshpande, Dwarakanath, & Goss 2000; Stan-
imirović & Lazarian 2001; Lazio et al. 2004). Under-
standing of this magnetic turbulence is of great im-
portance for key astrophysical processes, from star
formation to diffusion of heat and cosmic rays, we
refer the reader to recent reviews on the subject
Elmegreen & Scalo (2004), McKee & Ostriker (2007).

Observations of line-widths (Larson 1981, 1992;
Scalo 1984, 1987) and of the centroids of spectral
lines (von Hoerner 1951; Münch 1958; Kleiner &
Dickman 1985; Dickman & Kleiner 1985; Miesch &
Bally 1994; O’Dell & Castañeda 1987) have been
used for well over half a century to study turbulence
in the ISM. An important measure that one can hope
to retrieve from spectral line data is the power-law

1Instituto de Ciencias Nucleares, Universidad Nacional
Autónoma de México, Apdo. Postal 70-533, México D.F.
04510, México (esquivel@nucleares.unam.mx).

2Department of Astronomy, University of Wisconsin-
Madison, 475 N. Charter St., Madison, WI 53706, USA (lazar-
ian@astro.wisc.edu).

index of the underlying velocity field. However, the
shape of spectral lines does not depend solely on the
velocity field, but on the density of emitting mate-
rial as well. The separation of the two contributions
has proven to be a formidable (and in some aspects
still an open) problem (see reviews by Lazarian 2006,
2008).

In parallel with the increasing number and qual-
ity of observations, there have been substantial the-
oretical and numerical advances in our understand-
ing of compressible magnetohydrodynamic (MHD)
turbulence (see Cho & Lazarian 2003 and also re-
views Cho, Lazarian & Vishniac 2003, and Cho &
Lazarian 2005). Therefore comparison between the-
ory, numerics and observations has become essential.

Since turbulence is essentially an stochastic pro-
cess, statistical methods are necessary for its study.
Studies of correlations can be obtained in real space
using correlation or structure functions, but also in
Fourier space using spectra. Wavelets, which some-
times are preferable for handling of the real observa-
tional data, combine properties of both correlation
functions and spectra and can be related to both of
them. A well-known example of of wavelets, the ∆-
variance, has been successfully used to retrieve the
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46 ESQUIVEL & LAZARIAN

same information yielded by two point statistics (i.e.
power-spectra or structure functions) (Stutzki et al.
1998; Mac Low & Ossenkopf 2000; Bensch et al. 2001;
Ossenkopf & Mac Low 2002). However, neither of
the measures above is capable of separating velocity
and density contributions to the spectral lines. The
latter separation should be done on the basis of the-
oretical understanding of the statistical properties of
the Doppler-shifted spectral lines3.

Recent years have been marked by a sharp in-
crease of interest in statistical techniques of analy-
sis of observations of astrophysical turbulence. We
can mention in this respects two web sites by Alyssa
Goodman, namely “Taste Tests”4 where different
comparisons of the numerical simulations and obser-
vations are presented, and “Astronomical Medicine”
site5 where application of sophisticated medical anal-
ysis software are applied to astronomical data. In
addition, we may mention new ways of analyzing
column densities, such as “Genus” (Lazarian 1999;
Lazarian, Pogosyan, & Esquivel 2002; Kim & Park
2007; Chepurnov et al. 2008), “Bispectrum” and
“Bicoherence” (Lazarian 1999; Lazarian, Kowal, &
Beresnyak 2008; Burkhart et al. 2009). A discussion
of those, is, however, beyond the scope of our present
publication, which deals with a way of extracting the
statistics of velocity from observed Doppler-shifted
spectral lines.

Among new theoretically-motivated way of re-
covering velocity statists we can mention “Veloc-
ity Channel Analysis” (VCA; Lazarian & Pogosyan
2000; Lazarian et al. 2001, 2002; Esquivel et al.
2003; Lazarian & Pogosyan 2004)6, “Modified Ve-
locity Centroids” (MVCs; Lazarian & Esquivel 2003;
Esquivel & Lazarian 2005; Ossenkopf et al. 2006;
Esquivel et al. 2007, the first three hereafter LE03
and EL05, OELS06, respectively), and the “Velocity

3An example of empirical approach to the problem is the
use of the Principal Component Analysis (PCA) discussed, for
instance, in Heyer & Brayn (2004). We feel that this powerful
approach does not show all its strength being isolated from
theory. For instance, it is known that for shallow density
spectrum the statistics of Position-Position-Velocity (PPV)
data cubes inseparably depends on both spectra of velocity
and density (Lazarian & Pogosyan 2000). This effect has not
been demonstrated so far within the PCA approach.

4www.cfa.harvard.edu/~agoodman/newweb/tastetests.

html
5am.iic.harvard.edu
6The “Spectral Correlation Function” (SCF) (Rosolowsky

et al. 1999; Padoan, Rosolowsky, & Goodman 2001) is another
new measure, which, however, under close examination differ
from the measure in VCA only by its normalization. The ad-
vantage of the normalization adopted in the VCA is that the
observations can be described in terms of underlying corre-
lations of velocity and density, which is not the case for the
normalization adopted for the SCF.

Coordinate Spectrum” (VCS; Lazarian & Pogosyan
2006, 2008). This paper explains when velocity cen-
troids, including MVCs are capable of measuring the
statistical properties of the underlying velocity tur-
bulence.

The layout of this paper is as follows. In § 2 we
present the basic statistical toolds used. We will re-
view some of our work about the retrieval of velocity
statistics from velocity centroids in § 3. A special
emphasis on the anisotropies in the statistics that
result from the presence of a magnetic field, and a
discussion of how can they be used to reveal the di-
rection of he mean magnetic field is presented in § 4.
Finally we provide with a brief summary in § 5.

2. TWO-POINT STATISTICS

Two-point statistics, such as correla-
tion/structure functions and power spectra are
the simplest, and most widely used method to char-
acterize turbulence. The (second-order) correlation
function of a quantity f(x) is defined as:

SF (r) =
〈

[f(x) − f(x + r)]
2
〉

, (1)

where r is the “lag”, and 〈...〉 denotes an ensemble
average over all the space (x). The correlation func-
tion (or auto-correlation function)

CF (r) = 〈f(x) · f(x + r)〉 , (2)

can be easily related structure function as
SF (r) = 2 [CF (0) − CF (r)], where CF (0) is the
variance of f(x). The power spectrum can be defined
as the Fourier transform of the correlation function,
P (k) = F [CF (r)], where k is the wave-number.

The usefulness of these type of functions lies in
the fact that they have a power-law behavior in the
so-called inertial range. Energy is injected at large
scales, and cascades down without losses down to
the scales at which (viscous) dissipation occurs. The
inertial range is precisely between these two scales.
For instance, the Kolmogorov model of hydrodynam-
ical (and incompressible) turbulence predicts that
the difference in velocities at different points in the
fluid increases on average as the cubic root of the
separation (|δv| ∝ l1/3). This famous scaling results
in a structure function SF (r) ∝ r2/3, and a (three
dimensional) power spectrum P (k) ∝ k−11/3. Notice
that the Kolmogorov model assumes isotropic turbu-
lence (i.e. we have replaced r by r = |r|,and k by
k = |k|). But, turbulence is not isptopic in general.
In particular, by introducing a preferential direction
of motion, the magnetic field that threads the ISM
makes the turbulent cascade anisotropic. There are,
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STATISTICS OF VELOCITY CENTROIDS 47

however, some statistical measures that are not very
sensitive to such anisotropy (for instance VCA, see
Esquivel et al. 2003). And in fact, it is customary to
average correlation and structure functions in shells
(or annuli) of equal separation (or average the power
spectrum in wave number) effectively reducing the
statistics to one dimension. In the following section
(§ 3) we will do such averaging procedure, but we
will come back to discuss how can these anisotropies
be exploited to learn something about the magnetic
field in § 4.

3. TRACING THE STATISTICS OF VELOCITY
WITH CENTROIDS

Several studies, with varying degrees of success,
have been made to obtain the spectral index of tur-
bulence (power-law index of the velocity spectrum,
correlation or structure function). However, many
of them are restricted to ionized media (interestel-
lar scintillations for instance), and more importantly
they are only sensitive to fluctuations in density.
While, density fluctuations are a natural result of
a turbulent cascade, one has to make the leap from
the observed fluctuations of density to a dynamical
quantity predicted by theoretical models, such as ve-
locity or magntetic field. It is therefore very desirable
to obtain directly the spectral index of velocity from
observations.

Evidently, the Doppler-shifted spectral lines con-
tain information about the velocity. However, they
are also affected by density fluctuations, and one has
to be careful to interpretate the statistics drawn from
observations, in particular results from 2D maps of
velocity centroids. Velocity centroids are ussually
defined as (von Hoerner 1951; Münch 1958):

C(X) =

∫

vz Iline (X, vz) dvz
∫

Iline (X, vz) dvz
, (3)

where Iline is the line intensity at a position X =
(x, y) in the plane of the sky, at line of sight (LOS)
velocity vz. The integration limits are defined by
the extent of velocities covered by the object. If
the medium is optically thin, and the emissivity is
proportional to the density (i.e. HI for instance), one
can replace the velocity integrals by integrals over
the actual LOS (chosen here to coincide with the
z-axis, see LE03, EL05):

C(X) =

∫

vz (x) ρ (x) dz
∫

ρ (x) dz
, (4)

where x = (x, y, z). One could construct the struc-
ture function of these centroids, but the denominator

of equation (4) makes the algebra a bit messy, and
does not provide a significant difference over “unnor-
malized centroids” (see LE03),

S(X) =

∫

vz Iline(X, vz) dvz = α

∫

vz(x) ρ(x) dz .

(5)
Replacing x1 = x and x2 = x + r, and similarly

X1 = X and X2 = X + R, the structure function of
centroids can be written as:

〈

[S(X1) − S(X2)]
2
〉

= α2

∫∫

dz1dz2

[

D(r) − D(r)|
X1=X2

]

, (6)

where

D(r) =
〈

[ρ (x1) vz (x1) − ρ (x2) vz (x2)]
2
〉

. (7)

The notation |X1=X2
indicates that the integral is to

be computed for a zero distance between X1 and X2

for the second term (i.e. varying only in z). Writ-
ing the density and velocity fields as a mean plus
a fluctuating part (ρ = ρ0 + ρ̃, vz = v0 + ṽz), and
approximating the fourth order moments as a com-
bination of second order moments (see LE03, EL05),
the structure function of unnormalized centroids be-
comes:

〈

[S(X1) − S(X2)]
2
〉

≈ I1(R) + I2(R)

+I3(R) + I4(R) , (8)

where

I1(R) = α2
〈

v2

z

〉

∫∫

dz1dz2

[

dρ(r) − dρ(r)|X1=X2

]

,

(9a)

I2(R) = α2
〈

ρ2
〉

∫∫

dz1dz2

[

dvz
(r) − dvz

(r)|
X1=X2

]

,

(9b)

I3(R) = −
1

2
α2

∫∫

dz1dz2 [dρ(r)dvz
(r)

− dρ(r)|X1=X2

dvz
(r)|

X1=X2

]

, (9c)

I4(R) = α2

∫∫

dz1dz2

[

c(r) − c(r)|
X1=X2

]

. (9d)

We have made use of the 3D structure functions of
the density and of the LOS velocity:

dρ(r) =
〈

[ρ̃ (x1) − ρ̃ (x2)]
2
〉

, (10a)

dvz
(r) =

〈

[ṽz (x1) − ṽz (x2)]
2
〉

, (10b)
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48 ESQUIVEL & LAZARIAN

and the remaining density-velocity cross-correlations
have been grouped into

c(r) = 2 〈ṽz(x1)ρ̃(x2)〉
2
− 4ρ0 〈ρ̃(x1)ṽz(x1)ṽz(x2)〉 .

(11)
In the decomposition proposed in equation (8)

the term I1 can be identified with the structure
function of column density (weighted by

〈

v2
〉

, thus
measurable from observational data), the I2 term
contains the analogous in terms of velocity, which
could be used directly (assuming isotropy) to obtain
the velocity spectral index. The remaining terms
(I3 and I4) are cross-terms, and cross-correlations,
respectively, and they “contaminate” our statistics.
Neglecting them is that we arrived to our defini-
tion of MVCs (LE03), we proposed to simply sub-
tract the structure function of column density from
that of the centroids. Later on (EL05, OELS06, Es-
quivel et al. 2007) we tested the retrieval of the veloc-
ity spectral index with various data cubes, magne-
tohydrodynamic (MHD) simulations and ensembles
of artificially produced fractional Brownian motion
cubes (fBms). Our results show that centroids are
only useful to trace the scaling of turbulent velocity
only when this is subsonic, and that the technique
could be pushed to mildly supersonic turbulence
(sonic Mach number

∼

< 2.5) with MVCs. More re-
cently (Esquivel et al. 2007), we have found that the
non-Gaussianity of both density and velocity fields
(which is characteristic of highly supersonic turbu-
lence) makes the approximation in equation (8) in-
adequate, the reason being that the fourth order cor-
relations could not be well approximated by second
order ones in that case. As a guideline for observers,
in LE03 we proposed a necessary condition for cen-
troids to trace the statistics of velocity (neglecting I3

and I4). When
〈

[S(X1) − S(X2)]
2
〉

/I1 � 1, then

velocity centroids trace the velocity scaling (this is
the case of subsonic turbulence), if the condition is
only partially fulfilled (e.g. the ratio

∼

< 2) then MVCs
would work, while the other centroids would not (this
was the case of weakly supersonic turbulence simu-
lations). The condition is strictly speaking a func-
tion of the lag R, thus one could have regions where
it is true and regions in where it is not, depending
on the slope of the structure functions involved. In
fact one should compare them at the region in which
we measure the spectral index. But, as a first ap-
proach, one can approximate the condition with the
maximal value of the structure functions, leading to
〈S̃2〉/〈Ĩ2〉 � 1, which can be easily obtained from
observations. A more restrictive criterion (but that
requires additional observational information) is the

ratio of the density dispersion to the mean density
(σρ/ρ0, OELS06), if this is less than unity centroids
work, if not, then centroids are useless to get the
velocity spectral index.

3.1. Application to SMC data

To illustrate what we describe above, we have
taken HI 21 cm. data that combines observations
with the Parkes telescope and the Australia Tele-
scope Compact Array (ATCA) interferometer, ob-
tained by Stanimirovic et al. (1999). We obtained
from them maps of column density, velocity centroids
(normalized and unnormalized), and MVCs, they are
shown in Figure 1. From both maps of centroids it
is evident the global large scale motion of the SMC,
a rotation respect to an axis that forms an angle of

∼

> 45◦ with respect to the x-axis in the maps of the
figure. On top with this regular motion there is an
important turbulent velocity field.

We have computed the structure function of these
quantities, and we show them in the last panel of
Figure 1. For this object 〈S̃2〉/〈Ĩ2〉 ∼ 0.36, thus
we should expect centroids not to trace the scaling
of velocity but rather should be highly affected by
density fluctuations. This can be verified from the
figure: I1 =

〈

v2
〉 〈

(I1 − I2)
2
〉

(i.e.
〈

v2
〉

times the
structure function of column density) is larger than
any other quantity plotted, over the entire range of
scales. The conclusion of this excercise is that to
obtain the spectral index of turbulent velocity in the
SMC one should resort to other techniques, such as
VCA (see Stanimirović & Lazarian 2001).

4. THE EFFECT OF MAGNETIC FIELD:
ANISOTROPY IN STRUCTURE AND

CORRELATION FUNCTIONS

The presence of a magnetic field introduces a
preferential direction of motion that makes the tur-
bulent cascade anisotropic. In a magnetized plasma,
the eddies become elongated in the direction of their
local magnetic field (see for instance Cho, Lazarian,
& Vishniac 2002). Fortunately, in spite of being
innadequate to recover the spectral index of veloc-
ity, velocity centroids reflect the anisotropic cascade
in sub-Alfvénic turbulence (regardless of the sonic
Mach number). In isotropic turbulence, two-point
statistics depend only in the magnitude of the lag
(or wave-number), therefore isocontours of 2D two-
point statistics are circular. In magnetized turbu-
lence, however, such isocontours become ellipses that
are alligned with the mean magnetic field. The mag-
nitude of the magnetic field determines how ellon-
gated they are. Velocity statistics have been pro-
posed before to study this technique (e.g. Esquivel
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STATISTICS OF VELOCITY CENTROIDS 49

Fig. 1. Application to Small Magellanic Cloud observations (data from Stanimirovic et al. 1999.) Top left: column
density map. Top right and bottom left: unnormalized velocity centroids and normalized velocity centroids, respectively.
Bottom right: structure functions of the maps of column density and centroids (as indicated in the legend).

et al. 2003; Vestuto, Ostriker, & Stone 2003; EL05),
but to our knowledge, they have not been exploited
observationally.

In Figure 2 we show (taken from EL05) contours
of equal correlation in maps of centroids from MHD
simulations with different sonic and Alfvén Mach
numbers, as well as different plasma β (the ratio of
gas to magnetic pressures). The parameters of the
simulations are included in the label of each panel,
and in more detail in EL05.

It is evident from the figure the clear anisotropy
present in all the sub-Alfvénic cases, regardless of

the large differences in sonic Mach numbers and/or
plasma β. The only case in which the anosotropy is
not evident is for super-Alfvénic turbulence (panel
[c], with MA ∼ 8). Whether turbulence in the ISM
is typically sub-Alfvénic or super-Alfvénic is an open
debate, for instance Padoan et al. (2004) advocate
for a model of supersonic turbulence in molecular
clouds.

A different way to visualize the anisotropy in two-
point statistics is to separate the correlations into
perpendicular and parallel to the mean (i.e. global)
magnetic field. This would mean to plot the value
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50 ESQUIVEL & LAZARIAN

Fig. 2. Anisotropy in the correlation functions: contours of equal correlation for MHD simulations (solid lines). For
reference we show isotropic contours as dotted lines. The sonic and Alfvén Mach numbers (Ms, MA respectively), and
the plasma β are indicated in the title of the plots. The anisotropy reveals the direction of the magnetic field for all the
sub-Alfvénic cases, regardless of the sonic Mach number (Taken from EL05).

of the correlations only along the symmetry axes of
the ellipses of equal correlation. We present this in
Figure 3 (from EL05).

In this case the anisotropy reveals itself as two
distinct correlation lenghts for the parallel and per-
pendicular direction. The difference in scale-lengths
should in principle reflect a dependence on (B̃/B0)

2,
where B̃ is the fluctuating magnetic field and B0 the

mean magnetic field. One should have in mind, how-
ever, that this method is only sensitive to the direc-
tion of the magnetic field in the plane of the sky. Tur-
bulence with a strong mean magnetic field oriented
along the line of sight would be indistinguishable
from super-Alfvénic turbulence. It is therefore diffi-
cult to determine (B̃/B0) from this type of statistics
in supersonic turbulence (where density fluctations
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Fig. 3. Correlation functions taken in directions parallel and perpendicular to the mean magnetic field. The anisotropy
shows in the different scale-lengths for the distinct directions. It is noticeable the little difference in panels (a), (b),
and (d). Which correspond to the same ratio B̃/B0, but very different sonic Mach numbers. Panel (c) corresponds to
super-Alfvénic (B̃ > B0) turbulence, and the anisotropy is not evident in the centroid maps (Taken from EL05).

are important). Nonetheless, the results in terms of
the direction of the B0 are robust and could be used
when other methods are not available.

5. DISCUSSION AND SUMMARY

We have made a review of our previous work on
velocity centroids, and their application to retrieve
the scaling properties of the turbulent velocity field
(i.e. spectral index). Additional details can be found
in Esquivel et al. (2003); LE03; EL05; OELS06, and
Esquivel et al. (2007). This work on centroids as-
sumes a optically thin medium with emissivity pro-

portional to density (e.g. HI), while self absorp-
tion has been addressed within VCA (Lazarian &
Pogosyan 2004) and VCS (Lazarian & Pogosyan
2006) techniques, which opens a way of formulating
the theory of centroids for partially absorbing media.
This has not been done yet.

We also assumed that the emission lines are be-
ing used. If the turbulence volume is between the
observer and an extended emission source, centroids
can be also used with the absorption lines. The
present theory assumes that the absorption is in lin-
ear regime however. Needless to say, that extend
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of the emission source of multiple emission sources
will determine the spatial coverage of scales that are
testable with the centroids. In comparison, the VCS
technique can deal with saturated absorption lines
and does not depend on the spatial coverage of the
data.

The advantage of centroids compared to the VCA
and the VCS techniques is, first of all, the ability
of centroids to study magnetic field direction, and,
second, ability to study subsonic turbulence more
reliably. While the VCA and VCS are also capable
of studying subsonic turbulence, the procedures for
extracting of information within these techniques are
much more complicated.

The most frequent mistake, we feel, is the use
of centroids while dealing with supersonic data (see
Miville-Deschênes et al. 2003). It is important to
understand that when we deal with the multi-phase
interstellar medium, e.g. HI, the criterion of being
subsonic is the most difficult to be satisfied for the
cold medium. Therefore, our research shows that
while the application of centroids to HII regions is
justified, their applications to find the statistics of
velocities in molecular clouds and cold HI cannot de-
liver reliable spectra. This, as we shown, should not
discourage the use of the centroids for studies the di-
rection of magnetic field. The reliability of the latter
technique can be tested by comparing the polariza-
tion arising from aligned dust (see Lazarian & Hoang
2007 for a discussion when we can rely on grain align-
ment to trace magnetic fields) and the results of the
statistical anisotropy analysis with centroids.

The main results of the paper above can be sum-
marized as the following:

• Centroids maps can be used to trace the spec-
tral index of the underyling turbulent velocity in sub-
sonic turbulence. In mildly supersonic turbulence
(sonic Mach number

∼

< 2 can be studied with MVCs
(LE03, EL05).

• Two criteria can be used to determine if cen-
troids are useful to obtain the velocity spectral index.

If
〈

[S(X1) − S(X2)]
2
〉

/I1 � 1 (see equations 8, 9)

or if σρ/ρ0 < 1. The first is a necessary condition,
the latter is more robust measure, but might require
additional information than what is ussually avail-
able from spectroscopic observations.

• We presented an example of the application
of velocity centroids to try retrieving the velocity
spectral index from real data (SMC observations
from Stanimirovic et al. 1999). The criteria pro-
posed above was not fulfilled, thus the spectral index
should be studied using an alternate method (such
as VCA, see Stanimirović & Lazarian 2001). We

showed how the dominant contribution to the statis-
tics of centroids are density fluctuations.

• Two point statistics are anisotropic for sub-
Alfvénic turbulence, both for subsonic and super-
sonic cases. This anisotropy is evident if we plot iso-
contours of velocity centroids, which become elon-
gated and reveal the direction of the mean mag-
netic field projected onto the plane of the sky. This
anisotropy can be used where other magnetic field
measures are not available.
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