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ASTROPHYSICAL JETS AS HYPERSONIC BUCKSHOT: LABORATORY
EXPERIMENTS AND SIMULATIONS
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RESUMEN

Los jets Herbig-Haro (HH) normalmente son interpretados como haces homogéneos de plasma viajando a
velocidades hipersénicas. Las estructuras en los jets frecuentemente son atribuidas a variaciones periddicas
o “pulsadas” en las condiciones de eyeccién. En esta contribucién ofrecemos una alternativa a los modelos
“pulsados” de jets protoestelares. Usando simulaciones numéricas directas y experimentos de laboratorio
exploramos la posibilidad que los jets sean cadenas de nudos sub-radiales que se propagan en un medio inter-
nudo. Nuestras simulaciones exploran una idealizacién de esta situacién, inyectando esferas pequenas (1 < 7jet)
y densas (p > pjet) embebidas en un flujo homogéneo. Las esferas estdn inicializadas con velocidades que
difieren por ~ 15% del flujo inter-nudo. Encontramos que el cambio de un flujo homogéneo a uno heterogéneo
tiene consecuencias significativas, dado que los nudos densos interactian entre ellos y con el medio inter-nudo
de maneras diversas. También presentamos nuevos experimentos que, por primera vez, simulan aspectos de
jets astrofisicos magnetizados. Nuestros experimentos exploran la propagacién y la estabilidad de burbujas con
jets internos super-magnetosonicos, radiativos y magnéticamente dominados. Los resultados son escalables a
medios astrofisicos como resultado de la similaridad de los parametros adimensionales que controlan los flujos
en los dos ambientes. Estos experimentos muestran que los jets estan sujetos a inestabilidades helicoidales
que rapidamente fragmentan al jet para formar finas cadenas de nudos hipersénicos, proveyendo un posible
fundamento para el modelo de “jet heterogéneo”.

ABSTRACT

Herbig-Haro (HH) jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic
velocities. Structure within jet beams is often attributed to periodic or “pulsed” variations of conditions at
the jet source. In this contribution we offer an alternative to “pulsed” models of protostellar jets. Using direct
numerical simulations and laboratory experiments we explore the possibility that jets are chains of sub-radial
clumps propagating through a moving inter-clump medium. Our simulations explore an idealization of this
scenario by injecting small (r < 7je;), dense (p > pjet) spheres embedded in an otherwise smooth inter-clump
jet flow. The spheres are initialized with velocities differing from the jet velocity by ~ 15%. We find the
consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each
other and with the inter-clump medium in a variety of ways. We also present new experiments that, for the
first time, directly address issues of magnetized astrophysical jets. Our experiments explore the propagation
and stability of super-magnetosonic, radiatively cooled, and magnetically dominated bubbles with internal,
narrow jets. The results are scalable to astrophysical environments via the similarity of dimensionless numbers
controlling the dynamics in both settings. These experiments show the jets are subject to kink mode instabilities
which quickly fragment the jet into narrow chains of hypersonic knots, providing support for the “clumpy jet”
paradigm.
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and the dynamics of the outflow during, and after the
its launch. While the small scale features in the jets
have been seen as interesting in their own right, in
this contribution we argue that they may hold keys
to understanding fundamental questions related to
collimated outflows

The origin of “knots” and “clumps” in jets re-
mains a subject of debate. Early studies focused
on clumpyness of the HH bow shocks; Norman &
Silk (1979) postulated the existence of single “inter-
stellar bullets”. Stationary crossing shocks due to
an overpressured jet beam expanding and then re-
collimating were an early possibility that was con-
sidered for knots along the beam (Raga et al. 1990).
More recently, Rubini et al. (2007) have suggested
oblique shock focusing as a natural mechanism for
hydrodynamic knot formation, though the presence
of magnetic fields (Hartigan et al. 2007), precession
(Masciadri et al. 2002), and interactions with the en-
vironment (Raga et al. 2002; de Gouveia Dal Pino
1999; Yirak et al. 2008) all offer other means by
which dense clumps might be created. While consid-
erable work has gone into these scenarios, currently
the most favored model for the knots are internal
working surfaces where shocks are driven down the
beam by pulsation at the jet source. This “pulsa-
tion” model has been extensively explored by Raga
and collaborators (Raga & Noriega-Crespo 1992;
Biro & Raga 1994; Raga & Biro 1993). In pulsed jet
simulations the density and velocity cross-sectional
profiles p;(r) & wv;(r) in the jet-launching region
are kept fixed, while the magnitude of the veloc-
ity varies sinusoidally. The pulsation scenario has
become so dominant that even when attempting to
address questions unrelated to clump formation, pe-
riodic inflow variations are frequently employed.

A variety of observational signatures can be re-
covered via pulsed jet models through careful choice
of specific jet physical parameters and sinusoidal
variability. In Raga et al. (2002) a two-mode launch-
ing model was proposed using velocity histories ex-
tracted from observations of HH 34 and HH 111.
Using these pulsation modes, axisymmetric hydro-
dynamic simulations provided a convincing match
to the location of the leading bow shock and the lo-
cation of bright knots in the beam. These results
provide strong support for pulsed jet models.

A detailed examination of jets observed at the
highest spatial resolution, however, show features
which do not fit into the pulsed jet paradigm. In
particular, a number of “archetypal” jets show fea-
tures at scales below the jet radius (r < r;) which
are distinctly displaced from the jet axis. In the case

of HH 47, the jet clearly shows a non-axisymmetric
morphology in the form an apparent helical bending
of the beam (Hartigan et al. 2005). The beam itself
is defined by a sequence of quasi-periodic knots with
displacements to either side of the nominal jet axis.
Explanations for this bending have included impacts
with objects (Raga et al. 2002; de Gouveia Dal Pino
1999), magnetic fields (Hartigan et al. 2007) and pre-
cession of the jet source (Masciadri et al. 2002). In
this contribution we consider the presence of sub-
radial, non-axisymmetric features to be a challenge
to the pulsed jet paradigm. We consider an alter-
native to the pulsed jet model and investigate the
consequences of intrinsic density heterogeneity in jet
formation and evolution (Yirak et al. 2009).

We are motivated to explore this model by both
observations and new, high energy density labo-
ratory astrophysics (HEDLA) plasma experiments.
The second half of this contribution discusses those
experiments. Using pulsed power, wire array tech-
nologies (Lebedev et al. 2004, 2005; Ciardi et al.
2007) have presented experiments that track the evo-
lution of fully magnetized, hypersonic, radiative jets.
The stability of hydro and MHD jets has long been
a topic of debate and these experiments shed some
light on the real dynamics of 3D systems. The ex-
periments show that kink mode instabilities strongly
affect the jet. As the kink mode grows into the
non-linear regime it disrupts but does not destroy
the jet. The saturation of the instability transforms
the jet into a sequence of collimated chains of knots
which propagate with a range of velocities. These
experiments represent the first time the fully multi-
dimensional time-dependent dynamics of radiative
magnetized jets have been observed. We note that
numerical simulations of these processes are neces-
sarily limited in resolution and are subject to ques-
tions of numerical boundary conditions, an issue not
affecting the experiments.

Thus, we propose a new model in which jets are
essentially heterogeneous chains of bullets. As we
shall see, the consequences of this model lead to
important insights about the dynamics of jets after
their launching.

1.1. Simulations

Numerical simulations of our model were un-
dertaken with the AstroBEAR computational code
(Cunningham et al. 2009) Information about the
AstroBEAR code may be found online, at http:
//www.pas.rochester.edu/ bearclaw. Here, the
code solved the 3D hyperbolic system of equations
for inviscid, compressible flow using a spatial second-
order and temporal first-order accurate MUSCL
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Fig. 1. Isocontours of logarithmic density at four times
in the simulation, t =30, 53, 77, and 100 yr. The clumps
are depicted in light green, with the jet material in blue.
The yz-plane along the jet axis clips the jet material
contours.

scheme using a Roe-averaged linearized Riemann
solver. Simple radiative cooling is included sepa-
rately using an iterative source term with a cooling
curve.

The inhomogeneities in the beam were intro-
duced as spherical density and velocity perturba-
tions in an otherwise smooth beam: we shall re-
fer to the former as “clumps” and the latter as
the “jet.” We begin with a Mach 30, over-dense
(Xja = pj/pa = 10), and overpressured (p;/pa = 10)
jet. The clumps all had the same initial number
density of p.=10% cm™3, yielding density ratios of
Xej = Pe/p;i=10 and Xcq = pe/pa=100. The clumps
were seeded with radii and velocities that were ran-
dom. The y- and z-locations of the clumps in the
jet were random with the constraint that the entire
clump be located within the jet beam. At the max-
imum AMR level, the jet radius was resolved by 24
cells, and the clump radii by 6-14 cells.

A time-sequence of the simulation is given over
four panels in Figure 1. Density plots and a Schlieren
image are shown in Figure 2. Figure 1 shows a 3D
representation of the simulation in the form of a set
of iso-density contours. In the panels, the jet beam
enters from the left hand side of the grid and prop-
agates to the right. Shortly after the start of the
jet, knots appear with random sizes, locations, and
speeds. The figure has been adjusted to track the
evolution of the clumps via an iso-density contour of
a passive clump tracer (in green). Thus the clumps
are readily recognizable as initially spherical inclu-
sions within the beam close to the inflow bound-
ary cells. As the simulation progresses, the clumps
evolve via their interaction with the inter-clump ma-

(AU)

"s00 1000 15002000 2500 3000

Fig. 2. The top two panels give grayscale images of loga-
rithmic density in the yz-plane on the jet axis at two dif-
ferent times, t =53 and 77 yr, corresponding to the lower
left and upper right panels of Figure 1. Lighter gray
corresponds to denser material. Velocity vectors origi-
nating at three knots have been overlaid, and they are
seen to change as the knots interact. The bottom panel
shows a synthetic Schlieren image at ¢ = 100 yr, which
illuminates such features as a clump with a forward bow
shock at z =2100 AU, a clump with reverse bow shock
at z =900 AU, and clump-induced “spur shocks” at sev-
eral places along the jet beam. The disk-like feature at
z = 2300 AU is discussed further in the text.

terial in the beam and, in some cases, with other
clumps.

Once clumps are launched into the jet there are
three possible consequences. The first consequence is
the clump propagating downstream unimpeded and
colliding with the jet head. In this case the dense
clump may break through the bow shock defining
the front edge of the jet leading to significant non-
axisymmetric structures there. This behavior is ap-
parent in both Figures 1 and 2, where a dense clump
has already traversed the jet length and propagated
through the jet shock/bow shock structure at the
terminus of the beam. The presence of a signif-
icant “knob” protruding at the lower edge of the
jet head defines the extent of the clump which now
forms the leading edge of the jet. A second possibil-
ity, however, is that the clump will not make it to
the leading edge of the jet. A clump compressed
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by a strong transmitted shock wave (in this case
the transmitted wave originates from its relative mo-
tion within the beam) will eventually be destroyed
in a “cloud crushing time” given approximately by
tee = 2TCXiJ/-2/|AUC| where xcj = pe/p;. If this hap-
pens before the clump reaches the jet head then the
clump material will be dispersed within the beam.

The third possibility for the long term evolution
of a clump is interaction with another clump. The
interaction can take the form of direct or glancing
collision depending on the impact parameter b. Even
when b > 2r. there can still be interactions between
a clump-driven bow shock and a neighboring clump.
Figures 1 and 2 show a number of such interactions
occurring. By the last panel of Figure 1, clump col-
lisions have resulted in a merged structure near the
head of the jet, and their effect on each other and
on the jet beam itself is complex. It is notewor-
thy that the collision, compression and subsequent
merger of clumps can come to resemble the internal
working surfaces in homogeneous, pulsed jets. The
difference between homogeneity and heterogeneity is
particularly striking for glancing clump collisions:
0 < b < 2r,. In these cases the clump-clump in-
teraction will be off center and one can expect from
momentum conservation that non-axial mot ions will
result. Figure 2 illustrates this point showing the off-
center collision of three clumps. Before the collision
the velocity vectors of all three clumps are purely
axial ¥ = v,€,. After the collision the clumps have
acquired transverse v, velocities. The ability to gen-
erate non-axial motions within the beam via clump
interactions is an important point as proper motion
studies of highly resolved HH jets show knot to knot
variability in both direction and speed.

In many studies, lifetimes of features along an HH
jet beam are derived by relating the current position
of the feature and its proper motion. Full velocity
histories of jets have been derived in this way from
observations in terms of multiple pulsation modes at
the jet launch region. Our models shed new light on
the issue of recovering pulsation histories from ob-
servations. We find that assuming periodic injection
histories can bias the description of jets. For each
data frame in our simulation we attempted to recon-
struct a periodic inflow history based on the location
of knots in the beam. In Figure 3, the axial density
profile is given in the left panel with knots identified
by circles. We then take the velocities at these posi-
tions to be the knot velocities. We found that at each
time we were able to get good fits to a periodic ejec-
tion even though no such history was imposed on the
jet. The three panels of Figure 3 show the result of

400
_ 180 fe=58yr
° vel4Be 16 kipi” 2 P
350 £ ///_‘\\ /d/"
i NP2 AN
1 2 el
= iz20
300
-100 -80 -60 -40 -20 0
launch time (yr)
0 180 [ =86
=86 yr —
~ vel4T+i-16 kmig < . e
¢ EIBU -
_———
ymfoo o o aff o S0
P ~
120 2
1
0 00 80 60 40 20 0
launch time (yr)
100
180 [ =42 yr
T [eelsavarims TN P
160 S
© EUlN N
= 140 AR AV A
£ N WY
2120 Ntd N/
o L ¢ A i - - g
0 500 1000 1500 2000 2500 3000 100 0 & 40 2 0

launch time (yr)
distance (AU}

Fig. 3. Left: The axial density profile normalized by
the ambient density, p/pa, is plotted with positions des-
ignated as “knots” given by “o”. Right: From top to
bottom, velocities for knots (“0”) versus their launching
(dynamical) time at ¢ =100, 80, and 40 yr. Results from
least-squares fits are shown with 1-0 error overlaid. The
period 7 and mean velocity with single-mode sinusoidal

amplitude, v; = v;0 vél), are printed on each panel.

least-squares fits to the data at different times with
1-0 error bounds overlaid. The average velocity of
the knots remains roughly constant for each of these
three times and is close to the jet velocity (v; = 150
km s~1), as expected. However, the amplitude of the
determined period varies by ~ 30% over time, and
the period itself varies by over 100%. The goodness
of the fits, though less at ¢ = 80 yr than the other
two times depicted, appears adequate. Although not
explicitly shown here, variation in the fit results is
correlated with knot-knot interactions. Thus, deter-
mination of periodic velocity histories from proper
motions must be considered suspect.

1.2. Laboratory Ezxperiments

Our High Energy Density Experiments were car-
ried out at the MAGPIE pulsed-power facility at Im-
perial College, which delivers a peak current of 1 MA
with a rise time of 240 ns. The experimental load
consists of a flat 6 or 6.5 pum thick Aluminium foil
connecting two cylindrical, co-axial electrodes. The
associated numerical simulations are performed with
our 3D, resistive MHD code GORGON. Further de-
tails of the experimental facility, the experimental
set-up including the diagnostics used, and the MHD
code can be found in Lebedev et al. (2005) and Ciardi
et al. (2007). A schematic diagram of the evolution
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Fig. 4. Schematic of the evolution of a jet/bubble system.

of a typical magnetic bubble and jet observed in the
experiments is shown in Figure 4.

During the first 200 ns (times are given from the
start of the current pulse), the initial ablation phase
of the foil produces ambient plasma extending for
a few millimeters above the foil. Electron density
data obtained through laser interferometry show an
exponentially decreasing axial profile, indicative of
thermal expansion. Simulations indicate that there
is little magnetic field embedded in this high-beta
plasma. After ~ 230 ns, the axial component of the
magnetic pressure is large enough to break through
the foil, effectively creating a gap (~ 1 mm) be-
tween the anode and the left-over foil. The magnetic
field then acts as a piston accelerating and sweeping
the ambient plasma into a shocked layer which con-
fines and delineates the bubble. At the same time,
a current-carrying jet forms on the axis of the bub-
ble via the “pinching” effect of the toroidal magnetic
field.

The dynamics of this first bubble and jet are es-
sentially the same as those observed in our experi-
ments using radial wire arrays (Lebedev et al. 2005).
However in the work presented here we are able to
produce and observe for the first time a periodic ac-
tivity of magnetic bubbles and jet formation. The
main difference in the present experiments is the ra-
dial density distribution of the plasma mass source.
While for the radial wire arrays it is constant, for the
foil the density distribution increases linearly with
the radius. Therefore, the initial gap produced by
the magnetic field can be more easily refilled by the
readily available plasma expanding from the remain-
ing foil. In addition, plasma can also expand from
the radiatively heated central electrode. Closure of
the gap essentially halts the flux of electromagnetic
energy (Poynting flux) into the bubble. The currents
can once again flow across the closed gap at the base
of the magnetic cavity and the initial magnetic field
configuration is thus once again re-established until a
new bubble is produced. Inside the already formed
magnetic cavity, the magnetic Reynolds number is
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Fig. 5. Plot of X-ray emission and bubble axial speed.
Note the correspondence of bubble launch episodes and
X-ray emission.

high and each bubble continues expanding, carry-
ing its own trapped magnetic flux. A tight corre-
lation exists between the observed X-ray emission
and the formation of each new bubble/jet system.
Figure 5 shows both the filtered X-ray emission and
the axial position of the top of three magnetic bub-
bles measured from time-resolved self-emission im-
ages obtained during one single experiment. The ex-
trapolated linear fit to the spatial data matches very
well the start of the emission and is consistent with
the X-ray bursts being associated with the forma-
tion of the magnetic bubble and jet, and the ensuing
compressional heating of the plasma. The fast rising
(~ 5 ns) part and peak of the emission are related
to the maximum compression of the jet.
Time-resolved images of XUV self-emission span-
ning a period of ~ 120 ns are shown in Figure 6 and
are representative of the evolution of the system.
The first image (Figure 6a) at 286 ns corresponds
to part of the data presented in Figure 5 and shows
the time just after the merging of the first two mag-
netic bubbles. The newly formed (3rd) bubble can
be clearly seen on the interior of the larger, merged
cavities. The subsequent three images (Figure 3b-d)
show the times 346 ns, 376 ns and 406 ns, respec-
tively, and were taken during a single experiment. It
shows the presence of multiple cavities and jets over
length scales spanning over an order of magnitude.
In general, the current-carrying jet is confined on the
axis of the cavitiy by the toroidal magnetic field and
it is in a configuration prone to current-driven (CD)
instabilities, the most disruptive being the “sausage”
or “pinch” and “kink” modes. The characteristic
growth time is of the order of the Alfven crossing
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Fig. 6. Time-series of filtered XUV emission images. The
timings on the images are: (a) 286 ns, (b) 346 ns, (c)
376 ns, (d) 406 ns. Panels b, c and d from the same ex-
perimental shot. The schematic cartoon above the XUV
emission images serve to guide the eye in identifying the
various features described in the main text.

time. It is important to note that the whole evo-
lution of the instabilities, well into the non-linear
regime, can be followed throughout the episodic jet
ejections. Indeed, a fundamental insight provided by
our laboratory studies is that while the instabilities
ultimately lead to the break-up of the jet, they do
not destroy the outflow altogether, leading instead
to a heterogeneous and clumpy outflow. The mag-
netic field is also substantially modified by the insta-
bilities, with the kink mode in particular leading to
the generation of a poloidal magnetic flux out of the
initial toroidal flux and to the tangling of the field
inside the magnetic cavity. Combined with the peri-
odic formation and burst of bubbles, the flow is effec-
tively injected into a long lasting and well collimated
channel, which is made up of multiple, nested cavi-
ties. Such morphology is shown in Figure 6, where
a jet surrounded by a bow shock is clearly visible
embedded inside a larger cavity. Recall, however,
that the bow-shaped shock envelope is driven by the
magnetic field and not hydrodynamically by the jet.

As has been discussed in detail by a variety of au-
thors (Lebedev et al. 2005) laboratory experiments
have bearing on astrophysical problems when key di-
mensionless parameters for both systems are in ap-
propriate regimes. The experiments presented above
considerably extend the range of the dimensionless
parameters that are obtained in laboratory explo-
rations of jet/outflows. The typical length scale
of the evolved laboratory system is L ~ 3 cm,
which combined with characteristic velocity, temper-
ature and density in the cavity V ~ 100 km s !,

T ~ 50 eV and p ~ 1075 g cm ™3 respectively, gives
Re ~ 5 x 10%, Reps ~ 500 and Pe ~ 50. In addi-
tion, the sonic and alfvenic Mach (ratio of the flow
speed to the Alfven speed) numbers in the jet are
M ~ M4 ~ 5 — 10, both of which are well matched
with those expected in astrophysical flows. The ratio
of thermal to magnetic pressure (plasma-£3) can vary
considerably between the dense jet and the mag-
netic cavity both spatially and temporally. Initially,
the magnetic bubble is magnetically dominated, with
[ < 1; however in the evolved cavity, after the onset
of instabilities we find 0.1 < 3 ~ 1, while for the
jet/outflow, we find § ~ 1. We also note that the
plasma is highly collisional and cools effectively via
radiative losses.

2. CONCLUSIONS

Taken together, our 3D simulations of a new “col-
limated clumps” scenario for protostellar jets and
our laboratory experiments of such jets offer a fun-
damentally different paradigm for understanding jet
origins and dynamics. Jet heterogeneity is seen as
being intrinsic in a way that links the jet morphol-
ogy on “meso-scales” to the processes (such as insta-
bilities) occurring on “micro-scales” near the central
engine.

While the pulsed-jet model has been successful
at interpreting some aspects of jets, it may be mis-
leading if used too generally. In particular, the as-
sumption of sinusoidal pulsations can limit the in-
terpretation of HH object observations. In our sim-
ulations, which had no sinusoidal variation in time,
we nonetheless were able to recover (erroneous) si-
nusoidal behavior using an analysis similar to that
which has been carried out on observations. While
one part of this behavior (the mean velocity v; )
fit the initial conditions well, the derivation of pul-
sation periods leads to the false conclusion that the
structures in the beam arose due to periodic ejection
behavior. We therefore conclude that care should
be taken when attributing observations of apparent
sinusoidal velocity variability in protostellar jets to
corresponding sinusoidal behavior of a central en-
gine.

In contrast to pulsed-jet models, our model of-
fers two attractive features: first, a natural mech-
anism (knot-knot interactions) helps explain small-
scale features along the jet axis. The idea that knots
or bow shocks in HH objects are evolving clumpy
structures has been discussed before in the context
of observations with ongoing HST observations giv-
ing continued support to this idea, e.g. (Hartigan et
al. 2005). The interaction of distinct sub-radial knots
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with each other and with an overall bow shock offers
a simple explanation for such evolution. The second
feature the model offers is the presence of unique
observational characteristics in the form of forward-
and reverse-facing bow shocks and spur shocks at the
edges of the jet beam. Our scenario provides a sim-
ple mechanism for the formation of sub-radial, non-
axisymetric features via multiple dense clumps which
have a nonzero velocity dispersion. The ease with
which non-axisymmetric features like spur shocks
(Heathcote et al. 1996) develops in our models is
attractive.

What would be the origin of the entrained
clumps? The issues of the stability of jets particu-
larly at “micro-scale” regions near the launch region
remains unresolved. Our experiments address this
issue, demonstrating that magnetized jet beams in
the lab break up into a sequence of quasi-periodic
knots due to the kink (m=0) or sausage (m=1) in-
stabilities . These knots may be displaced slightly to
the side of the nominal jet axis and may propagate
with varying velocities. This results in morpholo-
gies qualitatively reminiscent of HH-jet beams. It
seems plausible that a similar process could occur in
the astrophysical context, beginning with a smooth
beam near the central engine which then becomes
disrupted owing to the kink or sausage instabilities
on intermediate scales. This would result in a se-
ries of knots which continue to evolve as they prop-
agate away from the central engine. Such a scenario
would also explain the observed velocity differences
between knots, attributable to the particulars of each
knot’s formation. Thus, we conclude that the inter-
pretation of jets as heterogenous systems of knots
has attractive features that can relate the dynamics
of the jet launching to processes/features observed
at larger scales.
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