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STUDYING ISM MAGNETIC FIELDS AND TURBULENT REGIMES FROM

POLARIMETRIC MAPS

D. Falceta-Gonçalves,1,2 A. Lazarian,2 and G. Kowal3

RESUMEN

Mapas polarimétricos han sido usados para caracterizar el campo magnético en nubes moleculares. Sin embargo,
es dif́ıcil determinar las propiedades tridimensionales de mapas de proyección de dichas regiones. Por esta razón,
simulaciones numéricas pueden ser usadas como pruebas de las mediciones polarimétricas, y eventualmente
revelar más acerca de la relación entre la turbulencia y las ĺıneas de campo magnético. En este trabajo
realizamos una serie de simulaciones MHD de nubes moleculares turbulentas y creamos mapas sintéticos de
emisión polarizada de polvo, en las cuales variamos la dirección del observador. Determinamos la correlación
de la intensidad de la emisión y el grado de polarización para los modelos. Pudimos reproducir el decaimiento
del grado de polarización en zonas más densas sin suposición alguna de las propiedades de la componente de
polvo. La anticorrelación viene la simple cancelación de los vectores de polarización a lo largo de la visual. El
efecto es amplificado dentro de zonas de alta densidad ya que la configuración del campo magnético se torna
más compleja. Estudiamos la función de distribución de probabilidad, el espectro de potencias, y funciones de
estructura de los ángulos de polarización. Estos análisis estad́ısticos revelan gandres diferencias dependiendo
del régimen turbulento (es decir sub ó súper-sónico, sub ó super-Alfvénico). Entonces, estos métodos pueden ser
utilizados en observaciones polarimétricas para caracterizar la dinámica de las nubes moleculares. Presentamos
también un método Chandrassekhar-Fermi modificado para obtener la magnitud del campo magnético local.
La formulación sugerida no muestra limitaciones respecto al régimen turbulento u orientación.

ABSTRACT

Polarimetric maps have been used for the characterization of the magnetic field in molecular clouds. However, it
is difficult to determine the 3-dimensional properties of these regions from the projected maps. For that reason,
numerical simulations can be used as benchmarks for polarimetric measurements, and eventually reveal more
about the interplay of turbulence and the magnetic field lines. In this work we make a number of MHD numerical
simulations of turbulent molecular clouds and created their synthetic dust emission polarization maps, varying
the direction of the observer. We determined the correlation of intensity emitted and polarization degree for
the simulated models. We were able to reproduce the decay of the polarization degree at denser regions without
any assumption regarding the properties of the dusty component. The anti-correlation arises from the simple
cancellation of the polarization vectors along the line of sight. This effect is amplified within denser regions as
the magnetic field configuration becomes more complex. We studied the probability distribution function, the
power spectrum, and the structure function of the polarization angles. This statistical analysis revealed strong
differences depending on the turbulent regime (i.e. sub/supersonic and sub/super-Alfvenic). Therefore, these
methods can be used on polarimetric observations to characterize the dynamics of molecular clouds. We also
presented a modified Chandrashekhar-Fermi method to obtain the intensity of the local magnetic field. The
proposed formulation showed no limitations regarding orientation or turbulent regime.

Key Words: ISM: magnetic fields — methods: numerical — methods: statistical — techniques: polarimetric

1. INTRODUCTION

Giant molecular clouds in the interstellar
medium (ISM) are believed to be threaded by large

1Núcleo de Astrof́ısica Teórica, Universidade Cruzeiro do
Sul, Rua Galvão Bueno 868, CEP 01506-000, São Paulo,
Brazil (diego.goncalves@unicsul.br).

2Astronomy Department, University of Wisconsin, Madi-
son, 475 N. Charter St., WI 53711, USA.

3Astronomical Observatory, Jagiellonian University, ul.
Orla 171, 30-244 Kraków, Poland.

scale magnetic fields (Schleuning 1998; Crutcher et
al. 1999). However, it is still not completely clear
what is the role of the magnetic field in the dynam-
ics of the ISM and what is its effect on the star for-
mation process. Also, the ratio of the magnetic and
turbulent energy in these environments is a subject
of controversy (Padoan & Norlund 2002; Girart, Rao,
& Marrone 2006). Polarimetric maps have been ex-
tensively used for the determination of the magnetic
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38 FALCETA-GONÇALVES, LAZARIAN, & KOWAL

fields in several astrophysical environments. This
technique represents the best tool to characterize the
vector components of the magnetic field parallel to
plane of the sky. For galaxies and the intracluster
medium this technique can be used for polarization
of synchrotron emission (Hildebrand et al. 2000).

For a given polarization map of an observed re-
gion, the mean polarization angle indicates the ori-
entation of the large scale magnetic field. On the
other hand the polarization dispersion gives clues on
the value of the turbulent energy. This, as a con-
sequence, can be used to determine the magnetic
field component in the plane of sky. Chandrasekhar
& Fermi (1953) introduced a method (hereafter CF
method) for estimating the ISM magnetic fields
based on the dispersions of the polarization angle
and gas velocity. Simply, it is assumed that the
magnetic field perturbations are Alfvenic and that
the rms velocity is isotropic.

A promising approach to test this method is to
create two-dimensional (plane of sky) synthetic maps
from numerically simulated cubes. Ostriker, Stone,
& Gammie (2001) performed 3D-MHD simulations,
with 2563 resolution, in order to obtain polarization
maps and study the validity of the CF method on
the estimation of the magnetic field component along
the plane of sky. They showed that the CF method
gives reasonable results for highly magnetized me-
dia, in which the dispersion of the polarization angle
is < 25◦. However, they did not present any other
statistical analysis or predictions that could be use-
ful to determine the ISM magnetic field from obser-
vations. Polarization maps from numerical simula-
tions can also be used in the study of the correlation
between the polarization degree and the total emis-
sion intensity (or dust column density). Observa-
tionally, the polarization degree in dense molecular
clouds decreases with the total intensity as P ∝ I−α,
with α = 0.5 − 1.2 (Gonçalves, Galli, & Walmsley
2005). Padoan et al. (2001) studied the role of
turbulent cells in the P vs I relation using super-
sonic and super-Alfvenic self-gravitating MHD sim-
ulations. They found a decrease of the polariza-
tion degree with total dust emission within gravita-
tional cores, in agreement with observations, if grains
are assumed to be unaligned for AV > 3. When
the alignment was assumed to be independent on
AV , the anti-correlation was not observed. Recently,
Pelkonen, Juvela, & Padoan (2007) extended this
work and refined the calculation of polarization de-
gree introducing the radiative transfer properly. In
that work, the decrease in the alignment efficiency
arises without any ad hoc assumption. The align-

ment efficiency decreases as the radiative torques be-
come less important in the denser regions. However,
it is still not clear the role of the magnetic field topol-
ogy and the presence of multiple cores intercepted by
the line of sight on the decrease of polarization de-
gree.

In this work we attempt to extend the previously
cited studies improving and applying the CF method
to different situations. For that, we used both sub
and super-Alfvenic models, to study the role of the
magnetic field topology in the observed polarization
maps.

2. NUMERICAL SIMULATIONS

The simulations were performed solving the set
of ideal MHD equations, in conservative form, as fol-
lows:

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1)

∂ρv

∂t
+ ∇ ·

[

ρvv +

(

p+
B2

8π

)

I − 1

4π
BB

]

= ρf , (2)

∂B

∂t
−∇× (v × B) = 0 , (3)

with ∇ · B = 0, where ρ, v and p are the plasma
density, velocity and pressure, respectively, B is the
magnetic field and f represents the external accelera-
tion source, responsible for the turbulence injection.
For molecular clouds, we may assume that the ratio
of dynamical to radiative timescales is very large.
Under this assumption, the set of equations is closed
with an isothermal equation of state p = c2sρ, where
cs is the speed of sound. The equations are solved
using a second-order-accurate and non-oscillatory
scheme, with periodic boundaries, as described in
Kowal, Lazarian, & Beresniak (2007).

Initially, we set the intensity of the x-directed
magnetic field Bext and the gas thermal pressure
p. This allows us to obtain sub-Alfvenic or super-
Alfvenic, and subsonic or supersonic models.

The turbulent energy is injected using a random
solenoidal function for f in Fourier space. This, in
order to minimize the influence of the forcing in the
formation of density structures. We inject energy at
scales k ∝ L/l < 4, where L is the box size and l is
the eddy size of the injection scale. The rms velocity
δV is kept close to unity, therefore v and the Alfvén
speed vA = B/

√
4πρ will be measured in terms of

the rms δV . Also, the time t is measured in terms
of the dynamical timescale of the largest turbulent
eddy (∼ L/δV ).

We performed four computationally extensive 3D
MHD simulations, using high resolution (5123), for
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TURBULENCE FROM POLARIZATION MAPS OF MHD SIMULATIONS 39

TABLE 1

DESCRIPTION OF THE SIMULATIONS

Model P Bext Description

1 1.00 1.00 subsonic & sub-Alfvenic

2 0.10 1.00 supersonic & sub-Alfvenic

3 0.01 1.00 supersonic & sub-Alfvenic

4 0.01 0.10 supersonic & super-Alfvenic

different initial conditions, as shown in Table 1. We
simulated the clouds up to tmax ∼ 5, i.e. 5 times
longer than the dynamical timescale, to ensure a full
development of the turbulent cascade. We obtained
one subsonic and three supersonic models. One of
the supersonic models is also super-Alfvenic. Each
data cube contains information about parameterized
density, velocity and magnetic field. As noted from
equation (1) and (2), the simulations are non self-
gravitating and, for this reason, the results are scale-
independent.

Regarding the gas distribution in each model we
found an increasing contrast as we go to higher sonic
Mach number, independently on the Alfvenic Mach
number. Subsonic turbulence show a gaussian distri-
bution of densities, while the increased number and
strength of shocks in supersonic cases create smaller
and denser structures. In these cases, the density
contrast may be increased by a factor of 100–10000
compared to the subsonic case. The magnetic field
topology, on the other hand, depends on the Alfvenic
Mach number. Sub-Alfvenic models show a strong
uniformity of the field lines, while the super-Alfvenic
case shows a very complex structure. Both effects,
the density contrast and the magnetic field topology,
may play a role on the polarimetric maps, as shown
further in the paper.

3. RESULTS

3.1. Polarization Maps

To create the polarization maps we assumed the
dust polarization to be completely efficient and that
the radiation is originated exclusively by thermal
emission from perfectly aligned grains. Under these
assumptions, the local angle of alignment (ψ) is de-
termined by the local magnetic field projected into
the plane of sky, and the linear polarization Stokes
parameters Q and U are given by:

q = ρ cos 2ψ sin2 i,

u = ρ sin 2ψ sin2 i, (4)

where ρ is the local density and i is the inclina-
tion of the local magnetic field and the line of sight.

We then obtain the integrated Q and U , as well
as the column density, along the LOS. Notice that,
for the given equations the total intensity (Stokes
I) is assumed to be simply proportional to the col-
umn density. The polarization degree is calculated
from P =

√

Q2 + U2/I and the polarization angle
φ = a tan(U/Q).

In Figures 1 and 2 (see Falceta-Gonçalves, Lazar-
ian, & Kowal 2008, hereafter FLK08), we show the
obtained maps of column density and the polariza-
tion vectors for Models 3 and 4, respectively, for a
line of sight perpendicular to the original magnetic
field orientation. In Figure 1, the polarization vec-
tors are mostly uniform, and parallel to the external
magnetic field. Here, fluctuations on the polariza-
tion angle are seen within the condensations, where
the kinetic pressure overcomes the magnetic pres-
sure. In Figure 2, we show the column density and
polarization maps of the super-Alfvenic case (Model
4). Here, the kinetic energy is larger than the mag-
netic pressure almost everywhere. As a consequence
the gas easily tangles the magnetic field lines. The
angular dispersion is larger and the polarization de-
gree is smaller when compared to the sub-Alfvenic
case. For the super-Alfvenic case, the orientation of
the magnetic field regarding the LOS is irrelevant
to the polarization maps. The strongly magnetized
cases (Models 1, 2 and 3) present very similar po-
larization maps. Also, we must note that for LOS
parallel to the original magnetic field, the polariza-
tion maps seem similar to the super-Alfvenic case.

Regarding the polarization degree, observations
have shown that a decorrelation between the polar-
ization degree and the column densities is detected
for several objects (Matthews & Wilson 2002; Lai,
Girart, & Crutcher 2003; Wolf, Launhardt, & Hen-
ning 2003). Typically, the polarization degree fol-
lows the relation P ∝ I−γ , where γ ∼ 0.5 − 1.2
(Gonçalves, Galli, & Walmsley 2005) and I is the
total intensity. Usually, it is assumed that the grain
alignment efficiency may be the general cause of this
effect. However, as noticeable from Figures 1 and
2, the polarization degree is smaller within high col-
umn density regions for all models. Note that we as-
sumed perfect grain alignment, independent on the
local density. Therefore, the decorrelation in our
simulations must have a different cause. Another
possibility could be the effect of the averaging along
the LOS. Denser regions present a less uniform mag-
netic field. The annihilation of polarization vectors
perpendicular to each other could cause the decrease
in the polarization degree.
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40 FALCETA-GONÇALVES, LAZARIAN, & KOWAL

Fig. 1. Polarization of emission and column density maps for Model 3 (MS ∼ 7.0 and MA ∼ 0.7) with Bext perpendicular
to the line of sight. The complete map (512×512 pixels) (Upper-left) and the zoomed regions (100×100 pixels). The
sensitivity in simulated observations is assumed to be 0.3 of the maximum emission. Here, regions where the signal is
less than 0.3 do not show polarization vectors, and Pmax = 97%.

Fig. 2. Polarization of emission and column density maps for Model 4 (MS ∼ 7.0 and MA ∼ 7.0) with Bext perpendicular
to the line of sight. The complete map (512×512 pixels) (Upper-left) and the zoomed regions (100×100 pixels). The
sensitivity in simulated observations is assumed to be 0.3 of the maximum emission. Here, regions where the signal is
less than 0.3 do not show polarization vectors, and Pmax = 97%.
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Fig. 3. Correlation between averaged polarization degree
and the column density for the different models (FLK08).
Pmax is 100%, 98%, 97% and 85% for Model 1, 2, 3 and
4, respectively (FLK08).

In Figure 3 we show the correlation between the
polarization degree and the column density for the
different models, assuming that the magnetic field
is in the plane of the sky. For all models, the po-
larization of high column densities tend to decrease
to the minimum value (∼ 20% Pmax). This mini-
mum polarization degree should be zero for homoge-
neous density and random magnetic field. In inho-
mogeneous media it depends on the number of dense
structures intercepted by the line of sight. The major
contribution for the polarized emission comes from
dense clumps, which only are few along the LOS.
This poor statistics results in a non-zero polarization
degree. We also noticed that in subsonic turbulence
the polarization degree is large even for the higher
column densities. It occurs because in the subsonic
models the contrast in density is small and the simu-
lated domain is more homogeneous. Also, the num-
ber of dense clumps, which are able to tangle the
field lines, is reduced in the sub-sonic case. On the
contrary, for the super-Alfvenic case we obtain the
minimum polarization degree everywhere, i.e. purely
random magnetic field components. For the decreas-
ing part of the plots, we obtained a best fit with a
correlation exponent γ = 0.5. If grain alignment was
properly implemented in the calculations, the value
of γ should increase.

3.2. Statistics of Polarization Angles

The histograms of polarization angles are shown
in Figure 4. In the upper panel we show the his-
tograms for the sub-Alfvenic (Models 1, 2 and 3)
and the super-Alfvenic (Model 4) cases, with the
mean magnetic field lines perpendicular to the LOS.

The polarization angles present very similar distri-
butions and almost equal dispersion for the sub-
Alfvenic cases. This happens mainly because they
do not depend on the density structures, but on
the magnetic topology. Strongly magnetized turbu-
lence creates more filamentary and smoother density
structures (i.e. low density contrast) if compared to
weakly magnetized models and, most importantly
the magnetic field lines are not highly perturbed.
For Model 4, the distribution is practically homo-
geneous, which means that the polarization is ran-
domly oriented in the plane of sky. It occurs because
the turbulent/kinetic pressure is dominant and the
gas is able to easily distort the magnetic field lines.

In the bottom panel of Figure 4 we show the po-
larization angle histograms obtained for Model 3 but
for different orientations of the magnetic field. The
dispersion of the polarization angle is very similar for
inclination angles θ < 60◦, and increases for larger
inclinations. It may be understood if it is noted that
the projected magnetic field Bsky = Bext cos θ is of
order of the random component δB. It shows that
the dominant parameter that differ the distributions
of φ is the uniform magnetic field projected in the
plane of sky, and not the intensity of the global mag-
netic field.

Another statistical analysis, which helps us to
understand the topology of the polarization angles,
is based on structure functions. The second order
structure function (SF) of the polarization angles is
defined as the average of the squared difference be-
tween the polarization angle measured at 2 points
separated by a distance l:

SF(l) =
〈

|φ (r + l) − φ (r)|2
〉

. (5)

The structure functions calculated for the differ-
ent models are shown in Figure 5. In the upper panel
we present the SFs obtained for Model 3 with differ-
ent values of θ. As expected, all curves present a
positive slope showing the increase in the difference
of polarization angle for distant points. However,
the small scales part of the SF presents a plateau ex-
tending up to l ∼ 4 − 5 pix. This range corresponds
to the dissipation region and may also be related to
the smallest turbulent cells. Surprisingly, the log-log
slopes are equal independently on the inclination of
the LOS (for l between 3 and 20 grid points). The
same behavior was obtained for all models. In the
bottom panel we show the SFs calculated for the
different models with θ = 0. It is noticeable the in-
crease in the SF for higher Mach numbers. However,
the slopes are notably different. The maximum slope
is α ∼ 1.1, 0.8, 0.5 and 0.3 for Models 1, 2, 3 and
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42 FALCETA-GONÇALVES, LAZARIAN, & KOWAL

Fig. 4. Histograms of polarization angle of the different
models with θ = 0 (up), and for Model 3 and different
magnetic field orientations in respect to the line of sight
(angles θ) (bottom) (FLK08).

4, respectively. Observationally, the molecular cloud
M17 shows α ∼ 0.5 up to l = 3pc (Dotson 1996),
which would be in agreement with a cloud excited
by supersonic and sub(or critically)-Alfvenic turbu-
lence.

3.3. The Chandrasekhar-Fermi Method

Chandrasekhar & Fermi (1953) proposed a
method to estimate the ISM magnetic fields based
on the dispersion of polarization angles and the rms
velocity. Basically, it is assumed that the magnetic
field perturbations are Alfvenic, i.e. δv ∝ δB

√
ρ. If

the rms is isotropic, we may relate both as:

Bu ∼ 1

2

√

4πρ
δVLOS

δφ
, (6)

If one wants to expand the applicability of the
CF method for cases where the random component
of the magnetic field is comparable to the uniform
component, or for larger inclination angles, it is nec-
essary to take into account two corrections. Firstly,
we must introduce the total magnetic field projected
in the plane of sky Bsky ∼ Bext

sky + δB, where Bext
sky

represents the mean field component projected on
the plane of sky. We assume here, for the sake of

Fig. 5. Structure functions of polarization angle for
Model 3 with different magnetic field orientations regard-
ing the line of sight (angles θ) (up), and for the different
models with magnetic field perpendicular to the line of
sight (θ = 0) (bottom)(FLK08).

simplicity, that δB is isotropic. We assume that
the δB/B is a global relation and, in this case, we
may firstly obtain the dispersion of φ and then cal-
culate its tangent. Substituting δφ in equation (6)
by tan(δφ) ∼ δB/Bsky, we obtain the modified CF
equation:

Bext
sky + δB '

√

4πρ
δVlos

tan (δφ)
. (7)

Since the CF-method strongly depends on the
resolution (bacause of the dispersion of angles and
velocities), we applied equation (7) to our simulated
clouds, taking into account the effects of finite res-
olution. We calculated the average of the density
weighted rms velocity along the LOS (δVlos) and the
dispersion of the polarization angle (δφ) within re-
gions of R × R pixels. To simulate a real cloud we
substitute the parametric values of the Model 3 for
nH = 103cm−3 and T = 10K, and B ∼ 50µG. The
results showed a correlation between the obtained
magnetic field from equation (7) and the resolution,
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TABLE 2

CF METHOD ESTIMATES

Model θ(◦) C B0
CF/Bext Bext

sky/Bext Btot/Bext

3 0 20 ± 5 1.24 ± 0.09 1.00 1.25

3 30 24 ± 5 0.98 ± 0.08 0.87 1.11

3 45 25 ± 5 0.78 ± 0.07 0.71 0.96

3 60 33 ± 5 0.48 ± 0.05 0.50 0.75

3 90 31 ± 5 0.26 ± 0.03 0.00 0.24

1 0 7 ± 5 0.97 ± 0.08 1.00 1.11

2 0 10 ± 5 1.07 ± 0.07 1.00 1.16

4 0 34 ± 5 1.18 ± 0.07 1.00 1.41

which may be described by:

BCF = B0
CF

(

1 +
C

R0.5

)

, (8)

where R represents the observational resolution (to-
tal number of pixels), C and B0

CF are constants ob-
tained from the best fit. B0

CF represents the value of
BCF for infinite resolution observations, i.e. the best
magnetic field estimation from the CF method.

The fit parameters, as well as the expected val-
ues of the magnetic field from the simulations for all
models, are shown in Table 2. Here, the magnetic
fields are given in units of the mean field Bext. Since
the simulations are scale independent, one could
choose values of Bext to represent a real cloud, in
accordance with the parameters of Table 1. As an
example, assuming a cloud with nH = 103cm−3 and
T = 10K, and β = 0.01 (Model 3), we get B ∼ 50µG.
Choosing differently the density, temperature or the
model given by the simulations, i.e. β, we obtain a
different mean magnetic field. The obtained param-
eter C is very similar for the different inclinations,
but are different depending on the model, mainly be-
cause it is related to the scale on which the dispersion
of the polarization angle changes. Since C seems to
depend on the model and not on the inclination it
could also be used by observers to infer the physical
properties of clouds from polarization maps.

As a practical use, observers could obtain polari-
metric maps of a given region of the sky for different
observational resolutions (e.g. changing the resolu-
tion via spatial averaging). Using the CF technique
for each resolution and, then apply equation (8) to
determine the asymptotic value of the magnetic field
projected into the plane of sky B0

CF.

4. CONCLUSIONS

In this work we presented turbulent 3-D high res-
olution MHD numerical simulations in order to study
the polarized emission of dust particles in molecular
clouds. We obtained synthetic dust emission polar-
ization maps calculating the Stokes parameters Q, U
and I assuming a perfect grain alignment and that
the dust optical properties are the same at all cells.
Under these conditions, we were able to study the
polarization angle distributions and the polarization
degree for the different models and for different in-
clinations of the magnetic field regarding the LOS.

As main results, we obtained an anti-correlation
between the polarization degree and the column den-
sity, which is in agreement with observations, with
exponent γ ∼ −0.5. This value is related to random
cancellation of polarization vectors integrated along
the LOS, while larger indices require extra physics,
e.g. dependency of the dust alignment efficiency with
the local density.

We showed that the overall properties of the po-
larization maps are related to the Alfvenic Mach
number and not to the magnetic to gas pressure
ratio. Also, we studied the PDF’s and structure
functions of the polarization angles, which showed
a degeneracy of the results with the Alfvenic Mach
number and the angle between the magnetic field
and the LOS. Zeeman measurements of dense clouds
may be useful to help remove this degeneracy as it
could provide the magnetic field component along
the LOS and, therefore, the inclination.

Finally, we presented a generalization of the CF
method, which was showed to be useful for: (i) the
determination of the total magnetic field projected
in the plane of sky, and (ii) the separation of the two
components Bsky and δB.



©
 2

00
9:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
N

A
M

 -
 M

a
g

ne
tic

 F
ie

ld
s 

in
 th

e
 U

ni
ve

rs
e

 II
: F

ro
m

 L
a

b
o

ra
to

ry
 a

nd
 S

ta
rs

 to
 th

e
 P

rim
o

rd
ia

l U
ni

ve
rs

e
Ed

. A
. E

sq
ui

ve
l, 

J.
 F

ra
nc

o
, G

. G
a

rc
ía

-S
e

g
ur

a
, E

. M
. d

e
 G

o
uv

e
ia

 D
a

l P
in

o
, A

. L
a

za
ria

n,
 S

. L
iz

a
no

, &
 A

. R
a

g
a
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