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AMBIPOLAR DIFFUSION REVISITED

F. C. Adams1,2

RESUMEN

Esta contribución reexamina el problema de la difusión ambipolar como un mecanismo para la producción y
la evolución fuera de control (colapso) de núcleos en nubes moleculares centralmente condensados. El cálculo
principal aplica en el ĺımite geométrico de un núcleo altamente aplanado y permite un tratamiento semi-
anaĺıtico del problema completo. En esta formulación, el régimen de difusión ambipolar de evolución para
tiempos negativos (t < 0), se une suavemente a las soluciones de colapso para tiempos positivos (t > 0). Este
tratamiento muestra que, al final de la época de difusión, los núcleos resultantes tienen velocidades hacia el
centro distintas de cero pero submagnetosónicas, de acuerdo con observaciones actuales. Este trabajo deriva
una relación anaĺıtica entre la razón nodimensional de masa a flujo magnético, λ0 ≡ f−1

0 , de las regiones
centrales producidas por la condensación desbocada y la tasa adimensional de difusión ambipolar, ε0; los
núcleos que se colapsan tienen t́ıpicamente valores de la razón de masa a flujo, λ0 ≈ 2. Después mostramos que
la difusión ambipolar ocurre más rápidamente en presencia de fluctuaciones turbulentas, i.e., el valor efectivo
de la constante de difusión, ε0, puede ser aumentada por la turbulencia. También estudiamos el colapso
autosimilar con la inclusión de velocidades iniciales hacia adentro distintas de cero. Estos resultados muestran
que la teoŕıa resultante provee un paradigma que funciona para la formación de núcleos en nubes moleculares
y su subsecuente colapso para formar estrellas y sistemas planetarios.

ABSTRACT

This contribution re-examines the problem of ambipolar diffusion as a mechanism for the production and
runaway evolution (collapse) of centrally condensed molecular cloud cores. The principal calculation applies in
the geometric limit of a highly flattened core and allows for a semi-analytic treatment of the full problem. In
this formulation, the ambipolar diffusion regime of evolution for negative times (t < 0) smoothly matches onto
collapse solutions for positive times (t > 0). This treatment shows that the resulting cores display non-zero, but
sub-magnetosonic, inward velocities at the end of the diffusion epoch, in agreement with current observations.
This work derives an analytic relationship between the dimensionless mass to flux ratio λ0 ≡ f−1

0 of the central
regions produced by runaway core condensation and the dimensionless rate of ambipolar diffusion ε; cores going
into collapse typically have values of mass-to-flux ratio λ0 ≈ 2. Next we show that ambipolar diffusion takes
place more quickly in the presence of turbulent fluctuations, i.e., the effective value of the diffusion constant ε
can be enhanced by turbulence. We also study self-similar collapse with the inclusion of nonzero initial inward
velocities. Taken together, these findings show that the resulting theory provides a viable working paradigm
for the formation of molecular cloud cores and their subsequent collapse to form stars and planetary systems.

Key Words: ISM: magnetic fields — stars: formation

1. INTRODUCTION

Although we have a good working theory for the
formation of single, isolated stars (Shu et al. 1987),
the picture is not yet complete. Several impor-
tant generalizations of this theory are the subject
of current research, including the possible effects of
the background cluster environment on the star for-
mation process and the physical processes through
which the circumstellar disks produced during star
formation eventually lead to planet formation. How-

1Michigan Center for Theoretical Physics, University of
Michigan, Ann Arbor, MI 48109, USA (fca@umich.edu).

2Astronomy Department, University of Michigan, Ann Ar-
bor, MI 48109, USA.

ever, one of the most important unresolved issues is
the manner in which the pre-collapse initial condi-
tions are determined. This contribution re-examines
the process of ambipolar diffusion as a mechanism to
drive core formation and hence determine the initial
conditions for collapse.

In the standard picture, core formation was con-
sidered to proceed through the process of ambipolar
diffusion (Shu 1992). In this context, the magnetic
field is tied to the molecular gas, but the gas is only
weakly ionized. As the magnetic field exerts a force
on the gas to resist the inward pull of gravity, the
field lines slip outward relative to the mass, and the
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74 ADAMS

core material slowly moves inward; eventually, this
process forms a centrally concentrated core that is
ready for collapse. In the past decade, however, a
number of new observations (e.g., see André et al.
2000) suggest that this picture requires some modi-
fication. First, the observed ratio of starless cores to
those with embedded infrared sources indicates the
the core formation process takes place more rapidly
than the original estimates of quasi-static ambipo-
lar diffusion (Mestel & Spitzer 1976; Mouschovias
1976; Shu 1983; Nakano 1979, 1984; Lizano & Shu
1989; Basu & Mouschovias 1994; and many others).
Second, starless cores are observed to have signifi-
cant (but always subsonic) initial inward velocities
(e.g., Lee et al. 2001; Harvey et al. 2002, Walsh
et al. 2004), a finding that suggests that the core
formation processes is not completely quasi-static.
Third, the observed density profiles of starless cores
can now be measured, and they often have extended
central regions of constant density (e.g., Alves et al.
2001); as a result, these core more closely resem-
ble Bonnor-Ebert spheres than singular isothermal
spheres (note that these latter profiles were often
used as the prototypical pre-collapse states, begin-
ning with Shu 1977).

All of the above considerations suggest that the
core formation process may be more “dynamic” than
considered previously (e.g., in the simplest incarna-
tion of the four stages of star formation put forth
in Shu et al. 1987). In this paper, we present the
results of three recent studies that show how am-
bipolar diffusion produces molecular cloud cores in
a manner consistent with current observations. In
§ 2, we present a self-similar semi-analytic model of
the ambipolar diffusion process (Adams & Shu 2007,
hereafter AS2007). This calculation is complete, in
that it shows how the self-similar solutions for core
formation match smoothly onto the self-similar solu-
tions for protostellar collapse; in addition, this work
shows that the core formation time scale from am-
bipolar diffusion is consistent with observations, and
predicts the observed value of the initial inward ve-
locities. In § 3, we consider the ambipolar diffusion
process in the presence of turbulence; in this case,
since ambipolar diffusion is essentially a nonlinear
diffusion process, turbulent fluctuations act to speed
up the core formation rate (Fatuzzo & Adams 2002;
Zweibel 2002; see also Nakamura & Li 2005). Given
that initial inward velocities are observed, and pre-
dicted by theory (§ 2), we construct new infall col-
lapse solutions with nonzero starting velocities in § 4
(Fatuzzo et al. 2004). Finally, we conclude in § 5
with a summary and discussion of our results.

2. AMBIPOLAR DIFFUSION AND THE
GRAVOMAGNETO CATASTROPHE

This section presents an overview of the results
from AS2007, which provides a new look at the old
problem of core formation through ambipolar diffu-
sion. Due to space limitations, this section only out-
lines the calculation (see the original paper for fur-
ther detail). The basic evolutionary equations for a
flattened, self-gravitating, cloud core of surface den-
sity Σ and radial velocity u, threaded by a magnetic
field with vertical component Bz, are taken from pre-
vious work (see Shu & Li 1997; Li & Shu 1996, 1997).
Specifically, the equation of continuity is given by

∂Σ

∂t
+

1

$

∂

∂$
[$uΣ] = 0 . (1)

The force equation is

∂u

∂t
+ u

∂u

∂$
+

a2

Σ

∂

∂$
(ΘΣ) = g + ` , (2)

where the acceleration produced by self-gravitation
plus magnetic tension, g + `, is given by

g + ` =
1

$2Σ

∫ ∞

0

K0(r/$)S(r,$)2πrdr , (3)

where the source term is given by

S(r,$) = −GΣ($)Σ(r) +
Bz($)Bz(r)

(2π)2
, (4)

and the kernel K0 is defined via

K0(q) =
1

2π

∫ 2π

0

(1 − q cosϕ)dϕ

(1 + q2 − 2q cosϕ)3/2
. (5)

In equation (2), a is the gaseous isothermal sound
speed, and Θ provides the correction for the effects of
the magnetic pressure. Finally, the induction equa-
tion, which governs the evolution of the vertical com-
ponent of the magnetic field threading the core in the
presence of ambipolar diffusion, takes the form

∂Bz

∂t
+

1

$

∂

∂$
[$uBz] =

1

$Σ

∂

∂$

[

(2z0)
1/2

2πγC
$B2

zB+
$

Σ1/2

]

,

(6)
where we have defined the radial component of the
field at the upper vertical surface of the core by

B+
$ =

1

$2

∫ ∞

0

K0(r/$)Bz(r) rdr . (7)

The half-height z0 appearing in equation (6) is de-
fined by the assumed vertical hydrostatic equilibrium
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AMBIPOLAR DIFFUSION 75

(AS2007). The quantities γ and 1/C are, respec-
tively, the usual drag coefficient between ions and
neutrals and the height-averaged reciprocal coeffi-
cient for the ion mass-abundance (see Shu 1992). An
attractive feature of this present approach is that
we can delay specifying the numerical value of the
product γC until it comes to specifying dimensional
scalings appropriate to specific astronomical objects,
as long as the combination of parameters given by
equation (14) below is a small number compared to
unity.

We define the dimensionless ratio λ of mass per
unit area to flux per unit area according to

λ =
2πG1/2Σ

Bz
. (8)

Next we need expressions for Θ and z0 in terms of λ
for a magnetized singular isothermal disk, the form
that our inner core approaches asymptotically at the
moment of gravomagneto catastrophe. These rela-
tions are derived in AS2007. The resulting relation-
ships have the elegance of simplicity, and we assume
that the following expressions hold for all times:

Θ =
2 + λ2

1 + λ2
and z0 =

(

λ2

1 + λ2

)

a2

πGΣ
. (9)

Combined with equations (1), (2), (6), the relation-
ships (8) and (9) give us a closed set of equations to
solve for Σ, u, Bz, λ, Θ, and z0.

With the form of the magnetic induction equa-
tion specified, we now construct a similarity trans-
formation that changes the original description in
terms of the variables ($, t) to a description of (x, t);
specifically, we use the relations

x =
$

a|t| , Σ($, t) =
a

2πG|t| σ̃(x, t) , (10)

u($, t) = aṽ(x, t) , Bz($, t) =
a

G1/2|t| β̃(x, t) .

With this formulation, the equation of continuity is
given by

|t|∂σ̃

∂t
+

(

1 + x
∂

∂x

)

σ̃ +
1

x

∂

∂x
(xṽσ̃) = 0 , (11)

and the force equation becomes

|t|∂ṽ

∂t
+ (x + ṽ)

∂ṽ

∂x
+

1

σ̃

∂

∂x
(Θσ̃) = (12)

∫ ∞

0

ydy

x2
K0

(y

x

)

σ̃(y, t) [f(x, t)f(y, t) − 1] .

0.001 0.01 0.1 1 10 100 1000

-1.5

-1

-0.5

0

0.001 0.01 0.1 1 10 100 1000

0.001

0.01

0.1

1

10

Fig. 1. The dimensionless fluid fields from the self-similar
collapse calculation. The top panel shows the reduced
density field σ(ξ), as a function of the similarity variable
ξ, for varying choices of the flux ratio f0. The bottom
panel shows the analogous plot for the reduced velocity
field v(ξ).

The induction equation can then be written

σ̃2

[

|t|∂f

∂t
+ (x + ṽ)

∂f

∂x

]

=
ε

x

∂

∂x

[

xσ̃b̃

(

f2

√

1 + f2

)]

,

(13)
where f ≡ 1/λ and where we have defined the di-
mensionless diffusion coefficient

ε ≡
√

8πG

γC . (14)

Notice that ε is a small dimensionless parameter in
this problem, and is essentially the ratio of dynami-
cal time to the diffusion time (see also Galli & Shu
1993). In addition, the reduced radial magnetic field
b̃ is defined in terms of the integral

b̃(x, t) =
1

x2

∫ ∞

0

K0

(y

x

)

σ̃(y, t)f(y, t) ydy . (15)

Next, we can eliminate the time dependence from
the equations of motion to obtain reduced equations
in terms of the variable ξ only (where ξ is a scaled
version of x). To carry out this reduction, we must
solve for the solution at a given value of the flux ra-
tio f = f0 and then iterate (note that we are omit-
ting several pages of mathematics in this present de-
scription — see AS2007 for the full treatment). Fig-
ure 1 shows the resulting solutions for the reduced
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0.0001 0.001 0.01 0.1 1 10 100 1000
0
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0
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1

1.2

Fig. 2. The flux profile from the self-similar ambipolar
diffusion calculation. The top panel shows f(ξ), where ξ

is the similarity variable. The bottom panel shows f(m),
i.e., the flux ratio as a function of the reduced enclosed
mass.

fields σ(ξ) and v(ξ). Solutions are shown are vary-
ing choices of the dimensionless mass to flux ratio f0.
Note that the solutions are nearly independent of the
value of f0. Next, notice that the velocity field al-
ways approaches a nonzero value in the limit ξ → ∞,
i.e., at large radii in the core (for a given, fixed time).
The reduced velocity is given in units of the isother-
mal sound speed, so these solutions display nonzero,
but subsonic, asymptotic inward velocities. The typ-
ical value is about half the sound speed, consistent
with the observed values in nearby molecular cloud
cores (Walsh et al. 2007; Harvey et al. 2002). No-
tice also that the density and velocity profiles are
simple functions and can be fit with simple analytic
forms. As result, we have a purely analytic descrip-
tion of the reduced functions, which, when coupled
with the original similarity transformation, provide
a fully analytic description of the entire epoch of am-
bipolar diffusion. The corresponding flux profiles are
shown in Figure 2. The flux profile approaches the
value f0 at the core center and smoothly matches
onto the background cloud so that f(ξ) → 1 in the
limit of large ξ.

Figure 3 shows the ambipolar diffusion solution
in physical variables (where we have taken the sound
speed, etc., to have values typical of nearby clouds

0.0001 0.001 0.01 0.1 1
0

0.05

0.1

0.15

0.2

0.0001 0.001 0.01 0.1 1
100

1000

Fig. 3. Self-similar ambipolar diffusion solution for vary-
ing times before the moment of collapse. The top panel
shows the number density as a function of radius (scaled
to typical observed values) for a range of times (as la-
beled) before the gravomagneto catastrophe. The bot-
tom panel shows the corresponding profiles of inward ve-
locity versus radius for the same times.

– see AS2007). The time labels denote the time re-
maining before the gravomagneto catastrophe (the
moment that dynamical collapse begins). The bot-
tom panel shows the velocity as a function of ra-
dius. As emphasized above, the velocity solution
approaches a nonzero, subsonic value in the limit
r → ∞. This value, roughly half the sound speed,
is consistent with observed values. The top panel
shows the density profile as a function of radius, for
various times. Two issues are important here: First,
at times greater than about 1 Myr before the onset of
collapse, the “core” is too spread out to be identified
as a molecular cloud core. In these units, the density
is less than n = 104 cm−3, even at the center, which
is below the excitation threshold for ammonia. As
a result, molecular cloud cores forming via ambipo-
lar diffusion will only be visible as cores for the last
∼ 1 Myr before collapse. Second, the core spends
relatively more time in its spread out state, with an
extended central region at constant density (of rela-
tively low value). The core thus appears much like
a Bonnor-Ebert sphere in this phase. In this case,
however, the core is not in perfect hydrostatic equi-
librium. Instead, the velocity field is nonzero every-
where, and the core becomes increasingly centrally
concentrated before it collapses. In other words, Fig-



©
 2

00
9:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
N

A
M

 -
 M

a
g

ne
tic

 F
ie

ld
s 

in
 th

e
 U

ni
ve

rs
e

 II
: F

ro
m

 L
a

b
o

ra
to

ry
 a

nd
 S

ta
rs

 to
 th

e
 P

rim
o

rd
ia

l U
ni

ve
rs

e
Ed

. A
. E

sq
ui

ve
l, 

J.
 F

ra
nc

o
, G

. G
a

rc
ía

-S
e

g
ur

a
, E

. M
. d

e
 G

o
uv

e
ia

 D
a

l P
in

o
, A

. L
a

za
ria

n,
 S

. L
iz

a
no

, &
 A

. R
a

g
a

AMBIPOLAR DIFFUSION 77

ure 3 resolves the puzzle of how molecular cloud cores
can (often) look like Bonnor-Ebert spheres, but col-
lapse like singular isothermal spheres.

The collapse phase is shown in Figure 4 in physi-
cal units. These solutions are much like those found
previously (e.g., Shu 1977), with the following mod-
ifications: [1] These collapse solutions (valid for
t > 0) match smoothly onto the ambipolar diffu-
sion solutions (for t < 0, Figure 3) across the t = 0
boundary (the moment of gravomagneto catastro-
phe), [2] These solutions display nonzero inward ve-
locities of order 0.1 km/s in the limit r → ∞ (consis-
tent with observations), and [3] The resulting mass
infall rates are highly by a factor of about two. The
analogous solutions, calculated from the spherically
symmetric limit, are outlined in § 4 (see Fatuzzo et
al. 2004).

Before leaving this section, we note that this am-
bipolar diffusion calculation defines a mass scale that
can be identified with the characteristic scale for the
core mass function. At the moment of gravomagneto
catastrophe, the enclosed mass in physical units in-
side the boundary $ = $ce (where the core connects
to a common envelope) is given by

Mcore = A

(

1 + 2f2
0

1 − f4
0

)

a2$ce

G
. (16)

Note that the range of allowed flux ratios f0 is lim-
ited. The value of the central flux ratio f0 is de-
termined by the value of the dimensionless diffusion
constant ε, where this relationship is explicitly de-
rived in AS2007 (see equation [85] of that paper).
In particular, low flux ratios f0 < 0.3 would require
ε > 1 (which are unphysical in this treatment). For
typical values of a = 0.2 km/s and $ce = 0.2 pc,
and for 0.3 ≤ f0 ≤ 0.9, the core masses implied by
equation (16) vary from 5 to 22 M�. This range in
mass scale, a factor of 4.4, is smaller than the ob-
served range of stellar masses. However, the values
of a2 and $ce that specify the mass scale Mcore can
also vary, and the distributions of these parameters
add additional width to the resulting distribution
of core masses. Moreover, final stellar masses can
be appreciably smaller than the core masses at the
beginning of dynamical collapse because of various
inefficiencies in the star-formation process (e.g., bi-
nary formation, stellar winds, bipolar outflows, disk
evaporation). These variations will also add width to
the distribution of stellar masses (Adams & Fatuzzo
1996). One strength of ambipolar diffusion as a core-
formation mechanism is that, given plausible vari-
ations of a2 and $ce, it can produce a core-mass
distribution wide enough, when the pivotal state is

0.0001 0.001 0.01 0.1 1

0.1

1

10

100

0.0001 0.001 0.01 0.1 1

100

1000

Fig. 4. Self-similar collapse solutions for varying times
after the beginning of the collapse phase. The top panel
shows the number density as a function of radius (scaled
to typical observed values) for a range of times (as la-
beled) before the gravomagneto catastrophe. The bot-
tom panel shows the corresponding profiles of inward ve-
locity versus radius for the same times.

reached, to span the likely pre-collapse states for
making brown dwarfs to high-mass stars.

3. AMBIPOLAR DIFFUSION WITH
TURBULENT FLUCTUATIONS

As outlined in the introduction, in the stan-
dard paradigm of low mass star formation, molec-
ular cloud cores are supported by magnetic fields,
and the cores lose magnetic support through the ac-
tion of ambipolar diffusion. A critical issue facing
this scenario is the time scale required for magnetic
support to be removed from the cloud cores. Current
observations suggest that the number of cores with-
out stars seems to be smaller than that predicted
by estimates from ambipolar diffusion by a factor
of 3–10 (e.g., compare Jijina et al. 1999 with Shu
1983), so that the loss of magnetic support by diffu-
sion appears to be too slow. As shown in the pre-
vious section (Figure 3), cores are only observable
for the last ∼ 1 Myr before collapse, so this time
scale issue is not as severe as previously reported.
In addition, previous calculations have neglected the
effects of fluctuations on ambipolar diffusion. Re-
cent work (Fatuzzo & Adams 2002; Zweibel 2002)
shows that ambipolar diffusion occurs more rapidly
in the presence of fluctuations. In addition, because
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Fig. 5. Distribution of time scales for core formation
through ambipolar diffusion in the presence of turbulent
fluctuations. The histogram shows the results of 10,000
numerical simulations of the ambipolar diffusion pro-
cess with different realizations of the fluctuations. The
smooth dashed curve shows the analytically predicted
distribution for the given level of turbulence; the dot-
ted curve shows the wider distribution that would result
with a longer time scale for producing independent real-
izations of the turbulence. The vertical line on the right
hand side of the plot shows the (single) value of the time
scale for no turbulent fluctuations.

of the chaotic nature of the fluctuations, the ambipo-
lar diffusion time scale will take on a full distribution
of values for effectively “the same” initial states.

Fluctuations in both the magnetic field strength
and the density field are expected to be present
in essentially all star forming regions. Molecular
clouds are observed to have substantial non-thermal
contributions to the observed molecular line-widths;
these non-thermal motions are generally interpreted
as arising from MHD turbulence. Indeed, the size
of these non-thermal motions, as indicated by the
observed line-widths, are consistent with the mag-
nitude of the Alfvén speed. As a result, the fluc-
tuations are often comparable in magnitude to the
mean values of the fields (in other words, the relative
amplitudes of the fluctuations are of order unity).

Background fluctuations can lead to a net change
in the diffusion rate because magnetic diffusion is a
nonlinear process. As many authors have derived
previously (e.g., Shu 1992), the dimensionless diffu-
sion equation takes the schematic form

∂b

∂τ
=

∂

∂µ

(

b2 ∂b

∂µ

)

, (17)

where b is the magnetic field strength, µ is the La-
grangian mass coordinate, and we have ignored den-
sity variations. If the magnetic field fluctuates about
its mean value on a time scale that is short com-
pared to the diffusion time, then we let b → b(1+η),
where η is the relative fluctuation amplitude. In the
simplest case where the fluctuations are spatially in-
dependent, the right hand side of equation is multi-
plied by a cubic factor (1 + η)3. Although a linear
correction would average out over time, this nonlin-
ear term averages to a value greater than unity, and
the corresponding diffusion time scale grows shorter.

We have derived a more rigorous treatment of
this effect by including both magnetic field and den-
sity fluctuations (Fatuzzo & Adams 2002) into the
standard one-dimensional ambipolar diffusion prob-
lem (Shu 1983, 1992). For the case of long wave-
length fluctuations, the rate of ambipolar diffusion
increases by a significant factor Λ ∼ 1−10. The cor-
responding decrease in the magnetic diffusion time
helps make ambipolar diffusion more consistent with
observations. In addition, the stochastic nature of
the process makes the ambipolar diffusion time take
on a distribution of different values.

Figure 5 shows the resulting distribution of am-
bipolar diffusion times for a cloud layer with uni-
form fluctuations of amplitude A = 0.886; this level
of fluctuations is consistent with the non-thermal
line widths observed in star forming regions. The
solid curve (histogram) shows the result of 10,000
numerical simulations with different realizations of
the fluctuations. The dashed curve shows the an-
alytic prediction for the time scale distribution – a
gaussian with a peak value given by the expecta-
tion value and with a width predicted by application
of the central limit theorem. The dotted curve de-
picts a wider gaussian distribution that applies for
longer fluctuation time scales (resulting in fewer re-
alizations of the turbulent fluctuations). In the ab-
sence of fluctuations, the cloud maintains a single
value for its ambipolar diffusion time, as shown by
the delta-function spike at τe ≈ 12.5.

4. GENERALIZED SELF-SIMILAR COLLAPSE

Motivated by recent observations that show star-
less molecular cloud cores exhibit subsonic inward
velocities, we revisit the collapse problem for poly-
tropic gaseous spheres. In particular, we provide
a generalized treatment of protostellar collapse in
the spherical limit (Fatuzzo et al. 2004) and find
semi-analytic (self-similar) solutions, corresponding
numerical solutions, and purely analytic calculations
of the mass infall rates (the three approaches are in



©
 2

00
9:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
N

A
M

 -
 M

a
g

ne
tic

 F
ie

ld
s 

in
 th

e
 U

ni
ve

rs
e

 II
: F

ro
m

 L
a

b
o

ra
to

ry
 a

nd
 S

ta
rs

 to
 th

e
 P

rim
o

rd
ia

l U
ni

ve
rs

e
Ed

. A
. E

sq
ui

ve
l, 

J.
 F

ra
nc

o
, G

. G
a

rc
ía

-S
e

g
ur

a
, E

. M
. d

e
 G

o
uv

e
ia

 D
a

l P
in

o
, A

. L
a

za
ria

n,
 S

. L
iz

a
no

, &
 A

. R
a

g
a

AMBIPOLAR DIFFUSION 79

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Fig. 6. Comparison of self-similar, analytic, and numeri-
cal determinations of m0 for varying initial inward veloci-
ties uin and for isothermal initial conditions. The m0 val-
ues calculated from the self-similar equations of motion
(solid curve), numerically solving the partial differential
equations (dashed curve), and an analytic estimate (dot-
ted curve). All models use initial states with isothermal
static Γ = 1 and dynamic γ = 1.

good agreement). This study focuses on collapse so-
lutions that exhibit nonzero inward velocities at large
radii, as observed in molecular cloud cores, and ex-
tends previous work in four ways: (1) The initial con-
ditions allow nonzero initial inward velocity. (2) The
starting states can exceed the density of hydrostatic
equilibrium so that the collapse itself can provide the
observed inward motions. (3) We consider different
equations of state, especially those that are softer
than isothermal. (4) We consider dynamic equations
of state that are different from the effective equation
of state that produces the initial density distribu-
tion. This work determines the infall rates over a
wide range of parameter space, as characterized by
four variables: the initial inward velocity uin, the
overdensity Λ of the initial state, the index Γ of the
static equation of state, and the index γ of the dy-
namic equation of state. For the range of parameter
space applicable to observed cores, the resulting in-
fall rate is about a factor of two larger than found in
previous theoretical studies (those with hydrostatic
initial conditions and uin = 0).

This work allows for a greater understanding of
the infall rate Ṁ , which is perhaps the most im-
portant variable in the star formation problem. For

Fig. 7. Mass infall rates as a function of time for flat-
topped cores. The initial (asymptotic) inward velocities
are taken to be uin = 0 (solid curve), 0.5 aS (dotted
curve), and 1.0 aS (dashed curve).

isothermal initial conditions, the mass infall rate is
given by Ṁ = m0a

3
s/G so that the dimensionless

parameter m0 specifies the infall rate. For exam-
ple, Figure 6 shows the values of m0 calculated us-
ing three different approaches: the “standard” self-
similar formulation (as in Shu 1977), an analytic es-
timate, and a fully numerical determinations. The
resulting values of m0 are shown as a function of the
initial inward velocity. All of these cases use initial
states with isothermal static Γ = 1 and dynamic γ
= 1. Notice that the three approaches are in good
agreement, and that the infall rate is a smoothly in-
creasing function of the initial velocity. For observed
values of uin, the infall rate is roughly twice the
canonical value (for hydrostatic initial conditions).

Figure 7 shows the mass infall rates as a func-
tion of time for flat-topped cores with varying initial
infall speeds. This set of numerical collapse calcula-
tions begins with typical parameters observed in flat-
topped cores with sound speed aS = 0.2 km/s, and
assumes a central region of nearly constant density
spanning rC ≈ 1016 cm. The initial states are taken
to be overdense at the 10 percent level. The solid
curve shows the resulting mass infall rate (expressed
in M� yr−1) for the case with no initial velocity.
The dotted (dashed) curve shows the corresponding
mass infall rate for starting inward speeds of uin =
0.5 aS (uin = aS). When uin 6= 0, the mass infall
rates reach their peak values more quickly, the peak
values are smaller, and the infall rates more rapidly
approach their asymptotic values (as predicted by
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the similarity solutions). Thus, for the case of uin =
0.5 aS (roughly the observed value), the infall rate
shows a moderate peak at early times (consistent
with observed spectral energy distributions of Class
0 sources) and a later plateau (consistent with Class
I sources).

5. CONCLUSION

In this paper, we have reviewed the case for
ambipolar diffusion as a mechanism for producing
molecular cloud cores and thus determining the ini-
tial conditions for protostellar collapse. We have pre-
sented a self-similar formulation of the problem (§ 2,
AS2007) that provides a complete solution, includ-
ing the ambipolar diffusion epoch for t < 0 and the
collapse phase for t > 0 (Figures 3 and 4). These so-
lutions match smoothly across the t = 0 boundary,
which represents the moment that collapse begins,
and is known here as the gravomagneto catastrophe.
This updated treatment of ambipolar diffusion shows
that the time scale for which cores can be observed
as cores is relatively short, ∼ 1 Myr, roughly consis-
tent with observations of core statistics (e.g., Jijina
et al. 1999). Moreover, the cores spend most of
their pre-collapse phase with an extended region of
nearly constant density, so they resemble Bonnor-
Ebert spheres for much of their evolution (as ob-
served, e.g., Alves et al. 2001). However, the cores
are not Bonnor-Ebert spheres, as they are not hy-
drostatic, but rather are condensing into centrally
concentrated states, with a characteristic inward ve-
locity (at large radii) of about half the sound speed,
given both by observations (e.g., Lee et al. 2001)
and by the theory of § 2 (AS2007). This process also
defines a mass scale (equation 16) that can be made
consistent with observed core mass functions (e.g.,
Lada et al. 2008), for both the characteristic mass
and width of the distribution.

The core formation time scale can be reduced fur-
ther through the action of turbulent fluctuations (§ 3;
Fatuzzo & Adams 2002; Zweibel 2002). The inclu-
sion of fluctuations not only speeds up the ambipolar
diffusion rate, but it also implies that the core for-
mation time will be sampled from a distribution of
values (Figure 5), i.e., the formation time scale de-
pends on the particular realization of the fluctuations
(which vary from case to case). For completeness,
this paper has also reviewed recent generalizations
of the infall-collapse solutions (§ 4; Fatuzzo et al.
2004). This work shows that the initial inward ve-
locities increase the mass infall rate compared to the
case of hydrostatic initial conditions; the observed
asymptotic velocities uin ∼ 0.1 km/s imply a factor

of two increase in Ṁ . Finally, for uin 6= 0, the mass
infall rate for flat-topped cores is more nearly con-
stant in time, compared with the hydrostatic case
(Figure 7).

Given the results outlined above, this updated
treatment of ambipolar diffusion is consistent with
observed core formation time scales, observed core
density profiles, observed asymptotic inward veloci-
ties, and observed core mass functions. Further, the
subsequent collapse properties are consistent with
our current understanding of Class 0 and Class I pro-
tostellar sources. Ambipolar diffusion thus provides
a viable mechanism to drive the formation of molec-
ular cloud cores and thereby determine the initial
conditions for star formation.
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