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MOLECULAR CLOUD FRAGMENTATION DRIVEN BY GRAVITY,

AMBIPOLAR DIFFUSION,

AND NONLINEAR FLOWS: THREE-DIMENSIONAL SIMULATIONS

T. Kudoh1 and S. Basu2

RESUMEN

Empleamos la primera simulación completamente en tres dimensiones para estudiar el papel de los campos
magnéticos y la fricción ion-neutro en la regulación de la fragmentación inducida gravitacionalmente en las
nubes moleculares. Los núcleos en una nube inicialmente subcŕıtica evolucionan en una escala de tiempo de la
difusión ambipolar, mientras que los núcleos en una nube inicialmente supercŕıtica se desarrollan en un tiempo
dinámico. Encontramos que una medición instantánea de la relación entre la densidad (ρ) y la magnitud del
campo magnético (B) en diferentes puntos espaciales de la nube, coinciden con el historial evolutivo de un
núcleo individual. Cuando la densidad se vuelve grande, la relación tiende a ser B ∝ ρ0.5. También hemos
demostrado que la formación de núcleos colapsantes en nubes subcŕıticas es acelerada por flujos supersónicos
no lineales. Aunque el tiempo para la formación de un núcleo en nubes sucŕıticas se estima normalmente en
unas cuantas veces 107 años, encontramos que se acorta aproximadamente varias veces 106 años por los flujos
supersónicos. El resultado es consistente con simulaciones previas en dos dimensiones.

ABSTRACT

We employ the first fully three-dimensional simulation to study the role of magnetic fields and ion-neutral fric-
tion in regulating gravitationally driven fragmentation of molecular clouds. The cores in an initially subcritical
cloud develop gradually over an ambipolar diffusion time while the cores in an initially supercritical cloud
develop in a dynamical time. We found that a snapshot of the relation between density (ρ) and the strength
of the magnetic field (B) at different spatial points of the cloud coincides with the evolutionary track of an
individual core. When the density becomes large, both the relations tend to B ∝ ρ0.5. We also have demon-
strated that the formation of collapsing cores in subcritical clouds is accelerated by the supersonic nonlinear
flows. Although the time-scale of the core formation in subcritical clouds is normally estimated to be a few
×107 years, we found that it is shortened to approximately several ×106 years by the supersonic flows. The
result is consistent with previous two-dimensional simulations.

Key Words: diffusion — ISM: clouds — ISM: magnetic fields — MHD — turbulence

1. INTRODUCTION

Magnetic fields are one of the important compo-
nents in molecular clouds for the early stage of star
formation. In particular, the relative strength of the
magnetic field to that of the gravitational field is
an important parameter. When the ratio of mass
to magnetic flux is greater than a critical value, the
cloud is fragmented by gravitational instability in a
dynamical time. Such a cloud is called “supercriti-
cal.” On the other hand, when the mass-to-flux ratio
is less than the critical value, a cloud obeying mag-
netic flux-freezing is gravitationally stable because
the magnetic force can prevent the contraction of the

1Division of Theoretical Astronomy, National Astronom-
ical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
(kudoh@th.nao.ac.jp).

2Department of Physics and Astronomy, University of
Western Ontario, London, Ontario N6A 3K7, Canada
(basu@astro.uwo.ca).

cloud (Nakano & Nakamura 1978). Such a cloud is
called “subcritical.” However, subcritical clouds can
also experience fragmentation through the magnetic
diffusion induced by neutral-ion drift (ambipolar dif-
fusion). Due to this effect, their fragmentation de-
velops gradually over the ambipolar diffusion time,
which can be ∼ 10 times longer than the dynami-
cal time for canonical values of cosmic-ray induced
cloud ionization (Ciolek & Basu 2006).

Indebetouw & Zweibel (2000) and Basu & Ciolek
(2004) carried out two-dimensional simulations of
magnetized sheets in the thin-disk approximation,
which are threaded by an initially perpendicular
magnetic field. Starting with slightly subcritical or
critical initial conditions, they followed the gravita-
tional fragmentation of the cloud by inserting small
perturbations into the cloud. They found that frag-
mentation regulated by the ambipolar diffusion oc-

CD278
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MOLECULAR CLOUD FRAGMENTATION CD279

curred on a time scale intermediate between the dy-
namical time associated with supercritical collapse
and the ambipolar diffusion time-scale associated
with highly subcritical clouds.

Li & Nakamura (2004) and Nakamura & Li
(2005) have studied fragmentation by inserting su-
personic perturbations into the cloud. They per-
formed two-dimensional simulations in the thin-disk
approximation and showed that the timescale of
cloud fragmentation is reduced by supersonic tur-
bulence. Such a model can explain both relatively
rapid star formation and the relatively low star for-
mation efficiency in molecular clouds that is not well
explained if star formation starts from a supercritical
cloud.

In this paper, we study the three-dimensional ex-
tension of models such as those of Indebetouw &
Zweibel (2000), Basu & Ciolek (2004), Li & Naka-
mura (2004), and Nakamura & Li (2005). The self-
consistent calculation of the vertical structure of
the cloud allows us to test the predictions of two-
dimensional models as well as to make some new
predictions. We model clouds that are either decid-
edly supercritical or subcritical and study the evo-
lution after the introduction of small-amplitude or
large-amplitude (supersonic) perturbations.

2. NUMERICAL METHODS

We solve the three-dimensional magnetohydro-
dynamic (MHD) equations including self-gravity
and ambipolar diffusion, assuming that neutrals are
much more numerous than ions. Instead of solving
a detailed energy equation, we assume isothermality
for each Lagrangian fluid particle (Kudoh & Basu
2003, 2006). For the neutral-ion collision time and
associated quantities, we follow Basu & Mouschovias
(1994). The basic equations are summarized in Ku-
doh et al. (2007).

As an initial condition, we assume hydrostatic
equilibrium of a self-gravitating one-dimensional
cloud along the z-direction in a Cartesian coordi-
nate system (x, y, z). Though nearly isothermal, a
molecular cloud is usually surrounded by warm ma-
terial, such as neutral hydrogen gas. We also assume
that the initial magnetic field is uniform along the
z-direction. The detail of the initial condition is de-
scribed in Kudoh et al. (2007).

A set of fundamental units for this problem are
cs0, H0, and ρ0, where cs0 is the initial sound speed
and ρ0 is the initial density at z = 0, respectively,
and H0 = cs0/

√
2πGρ0. These yield a time unit

t0 = H0/cs0. The initial magnetic field strength (B0)

introduces a dimensionless free parameter

β0 ≡ 8πp0

B2

0

=
8πρ0c

2

s0

B2

0

= 2
c2

s0

V 2

A0

, (1)

the ratio of gas to magnetic pressure at z = 0. In the
above relation, we have also used VA0 ≡ B0/

√
4πρ0,

the initial Alfvén speed at z = 0. In the sheet-like
equilibrium cloud with a vertical magnetic field, β0

is related to the mass-to-flux ratio for Spitzer’s self-
gravitating layer. The mass-to-flux ratio normalized
to the critical value is

µS ≡ 2πG1/2
ΣS

B0

, (2)

where ΣS = 2ρ0H0 is the column density of the
Spitzer cloud. Therefore,

β0 = µ2

S . (3)

Although the initial cloud we used is not exactly
the same as the Spitzer cloud, β0 is a good indi-
cator of whether or not the magnetic field can pre-
vent gravitational instability. Dimensional values of
all quantities can be found through a choice of ρ0

and cs0. For example, for cs0 = 0.2 km s−1 and
n0 = ρ0/mn = 104 cm−3, we get H0 = 0.05 pc,
t0 = 2.5 × 105 yr, and B0 = 40µG if β0 = 0.25.

The level of magnetic coupling in the partially
ionized gas is characterized by numerical values of
the ion number density ni and neutral-ion collision
timescale τni. From equations (8) and (9) of Kudoh
et al. (2007), and using standard values of parame-
ters in that paper as well as the values of units used
above, we find an initial midplane ionization frac-
tion xi,0 = ni,0/n0 = 9.5×10−8 and a corresponding
neutral-ion collision time τni,0 = 0.11t0. The ioniza-
tion fraction xi and timescale τni at other densities
can be found from the initial midplane values given
that they both scale ∝ ρ−1/2 (Elmegreen 1979).

In this equilibrium sheet-like gas layer, we input
a linear or nonlinear (supersonic) perturbation to vx

and vy at each grid point. Independent realizations
of vx and vy are generated. The rms value of the
initial velocity perturbation in physical space, va, is
about 0.1cs0 for linear perturbations, and 3cs0 for
nonlinear perturbations, so that va ' VA0 for β0 =
0.25 as well.

The method of solution and boundary conditions
are described by Kudoh et al. (2007) (see also Kudoh,
Matsumoto, & Shibata 1999; Ogata et al. 2004). The
computational region is |x|, |y| ≤ 8πH0 and 0 ≤ z ≤
4H0, with a number of grid points for each direction
(Nx, Ny, Nz) = (64, 64, 40).



©
 2

00
9:

 In
st

itu
to

 d
e

 A
st

ro
no

m
ía

, U
N

A
M

 -
 M

a
g

ne
tic

 F
ie

ld
s 

in
 th

e
 U

ni
ve

rs
e

 II
: F

ro
m

 L
a

b
o

ra
to

ry
 a

nd
 S

ta
rs

 to
 th

e
 P

rim
o

rd
ia

l U
ni

ve
rs

e
 -

 S
up

p
le

m
e

nt
a

ry
 C

D
Ed

. A
. E

sq
ui

ve
l, 

J.
 F

ra
nc

o
, G

. G
a

rc
ía

-S
e

g
ur

a
, E

. M
. d

e
 G

o
uv

e
ia

 D
a

l P
in

o
, A

. L
a

za
ria

n,
 S

. L
iz

a
no

, &
 A

. R
a

g
a

CD280 KUDOH & BASU

Fig. 1. Time evolution of maximum densities at z = 0.
The blue line (β0 = 0.25) and the green line (β0 = 4)
show the evolution for models with a linear initial per-
turbation. The black line (β0 = 0.25) and the red line
(β0 = 4) shows the evolution for an initially nonlinear
supersonic perturbation. The orange line shows the evo-
lution for an initially nonlinear supersonic perturbation
and β0 = 0.25, but without ambipolar diffusion.

Fig. 2. The logarithmic density contours for β0 = 100
at t = 11.1 t0. Arrows show velocity vectors on each
cross section. The upper panel shows the cross section
at z = 0, and the lower panel shows the cross section at
y = 5.1 H0.

3. RESULTS

We summarize and expand upon results pre-
sented by Kudoh et al. (2007) and Kudoh & Basu
(2008).

Fig. 3. Logarithmic density contours at t = 15.3 t0 for
β0 = 4 and the linear perturbation case. Arrows show
velocity vectors on each cross section. The top panel
shows the cross section at z = 0, and the bottom panel
shows the cross section at y = 5.1 H0.

3.1. Linear perturbation studies

Figure 1 shows the time evolution of the maxi-
mum density ρmax at z = 0. The blue line (β0 =
0.25) and the green line (β0 = 4) show the evolution
for models with a linear initial perturbation of va '
0.1cs0. When β0 is 100 or 4, the magnetic field is
not strong enough to suppress the self-gravitational
instability of the cloud. In these cases, the density
evolves rapidly, over the sound-crossing time of the
most unstable wavelength (∼ 4πH0). However, when
β0 = 0.25, the cloud is self-gravitationally stable un-
less neutral-ion slip is present. Therefore, the density
evolves gradually over the diffusion time of the mag-
netic field. According to the two-dimensional linear
analysis by Ciolek & Basu (2006), the evolutionary
time scale of a significantly subcritical cloud is about
ten times longer than the dynamical time, for a stan-
dard ionization fraction, as used here. Our numerical
result is consistent with their analysis.

Figures 2, 3, and 4 show the logarithmic density
contours for linear perturbation cases of β0 = 100 at
t = 11.1 t0, β0 = 4 at t = 15.3 t0, and β0 = 0.25
at t = 150 t0, and respectively. Each upper panel
shows the cross section at z = 0, and the lower panel
shows the cross section at y = 5.1 H0 for β0 = 100,
y = 5.1 H0 for β0 = 4, and y = 4.3 H0 for β0 = 0.25
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MOLECULAR CLOUD FRAGMENTATION CD281

Fig. 4. Logarithmic density contours at t = 150 t0 for
β0 = 0.25 and the linear perturbation case. Arrows show
velocity vectors on each cross section. Upper panel shows
the cross section at z = 0, and the bottom panel shows
the cross section at y = 4.3 H0.

Fig. 5. Open circles show the magnetic field strength as
a function of density along z = 0 at t = 150 t0 for the
model with β0 = 0.25. The strength of the magnetic
field is normalized by

√

8πρ0c2

s0
. Filled circles are the

same for β0 = 4, at t = 15.3 t0. The blue line shows
the evolutionary track of the point at which the density
achieves its maximum value for the model with β0 = 0.25.
The red line is the same for β0 = 4.

respectively. The values of y for the lower panels
are chosen so that the vertical cut passes through

at least one dense core. (In these numerical simula-
tions, we use the term “core” to refer to the region
where the density is greater than the mean back-
ground density by about a factor of 3.) The size of
cores for β0 = 4 is bigger than that for β0 = 100.
The size becomes smaller again when the magnetic
field is stronger than critical (β0 = 0.25). This result
is consistent with the two-dimensional linear analysis
of Ciolek & Basu (2006), who found a hybrid mode
for critical or mildly supercritical clouds in which the
combined effect of field-line dragging and magnetic
restoring forces enforce a larger than usual fragmen-
tation scale. Arrows show velocity vectors on each
cross section. Maximum velocities become super-
sonic for β0 = 4 and β0 = 100, but remain subsonic
for β0 = 0.25. This is also consistent with the two-
dimensional numerical simulations of Basu & Ciolek
(2004).

Figure 5 shows the relation between density and
magnetic field on the plane z = 0. The strength of
the magnetic field is normalized by

√

8πρ0c2

s0. Open
circles show the magnetic field strength as a function
of density along z = 0 at t = 150 t0 for the model
with β0 = 0.25 (see Figure 4). Filled circles are the
same for β0 = 4, at t = 15.3 t0 (see Figure 3). The
blue line shows the evolutionary track of the point
at which the density achieves its maximum value for
the model with β0 = 0.25. The red line is the same
but for β0 = 4. This figure shows that the snapshot
of the relation between density and magnetic field at
different spatial points in the midplane of the cloud
overlaps with the evolutionary track of an individual
core. The dashed line shows B ∝ ρ0.5. When the
density becomes large, each relation approximately
tends to B ∝ ρ0.5. In the case of β0 = 0.25, the rela-
tion shows that core initially evolves to greater den-
sity without increasing the magnetic field strength.
This is caused by the slip of neutral gas through the
magnetic field during the subcritical phase of evolu-
tion.

3.2. Nonlinear perturbation studies

In Figure 1, the black line (β0 = 0.25) and the
red line (β0 = 4) show the evolution for models with
a nonlinear initial perturbation of va ' 3cs0.This fig-
ure shows that the timescale of collapsing core for-
mation for the nonlinear perturbation case is much
shorter than that for the linear perturbation case,
when β0 is the same. Even when the initial cloud is
subcritical (β0 = 0.25), the core formation occurs on
almost the same timescale as that of the supercriti-
cal (β0 = 4) linear perturbation case The orange line
(β0 = 0.25) shows the model with a nonlinear initial
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CD282 KUDOH & BASU

Fig. 6. Logarithmic density image at t = 0.85 t0 for
β0 = 4 and the nonlinear perturbation case. Arrows
show velocity vectors on each cross section. The top
panel shows the cross section at z = 0, and the bottom
panel shows the x− z cross section at y = −17.7 H0.

perturbation of va ' 3cs0, but without ambipolar
diffusion. It clearly shows that the collapsing core
formation dose not happen without ambipolar diffu-
sion, when the cloud is subcritical.

Figures 6 and 7 show an image of the logarithmic
density for nonlinear perturbation cases of β0 = 4 at
t = 0.85 t0 and β0 = 0.25 at t = 20.5 t0. The top
panel shows the cross section at z = 0, and the bot-
tom panel shows the cross section at y = −17.7 H0

for β0 = 4 and y = −5.9 H0 for β0 = 0.25. The value
of y for the bottom panel is chosen so that the verti-
cal cut passes through the maximum density point.
When the initial cloud is supercritical (β0 = 4) and
the perturbation is supersonic, the collapsing core
formation happens quickly, at t ' 0.85 t0, from the
initial flow. This may be too rapid to agree with ob-
servations. In the case of the initial subcritical cloud
(β0 = 0.25), a collapsing core is located in the vicin-
ity of x = −20 H0, y = −5 H0. The size of the core
is similar to that created by linear initial perturba-
tions (see Figure 4), although the shape is notably
less circular.

Figure 8 shows the time evolution of the maxi-
mum value of density at z = 0 (ρmax) and β at the
location of maximum density (βρmax) for the case

Fig. 7. Logarithmic density image at t = 20.5 t0 for
β0 = 0.25 and the nonlinear perturbation case. Arrows
show velocity vectors on each cross section. The top
panel shows the cross section at z = 0, and the bottom
panel shows the x− z cross section at y = −5.9 H0.

Fig. 8. Evolution of the maximum density (black line) at
z = 0 of the simulation box for the model with β0 = 0.25
and nonlinear initial perturbation, and evolution of β at
the location of maximum density (blue line).

of β0 = 0.25 with nonlinear perturbation. At first,
βρmax increases rapidly up to ∼ 0.9 due to rapid am-
bipolar diffusion in the highly compressed regions
caused by the initial supersonic perturbation. How-
ever, there is enough stored magnetic energy in the
compressed region that it rebounds and starts oscil-
lations, with βρmax around 0.7 and increasing grad-
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MOLECULAR CLOUD FRAGMENTATION CD283

ually. Eventually, βρmax becomes > 1 and the dense
region collapses to form a core. This figure implies
that β is a good indicator to see whether a subregion
of the cloud is supercritical or not. The evolution of
ρmax confirms that there is an initial compression fol-
lowed by a rebound to a lower density (still greater
than the initial background value) and subsequent
oscillations until a runaway collapse starts when con-
tinuing ambipolar diffusion has created a region with
β > 1.

4. SUMMARY AND DISCUSSION

We have studied fragmentation of a sheet-like
self-gravitating cloud by three-dimensional MHD
simulations. The main results are as follows.

• We confirmed that in the case of an initially
subcritical cloud (β0 = 0.25), cores developed grad-
ually over an ambipolar diffusion time when a small
perturbation is input, while the cores in an initially
supercritical cloud (β0 = 4 or β0 = 100) developed
in a dynamical time.

• In the B − ρ plane, the snapshot of the rela-
tion between magnetic field strength (B) and density
(ρ) at different spatial points of the cloud overlaps
with the evolutionary track of an individual core.
When the density becomes large, each relation ap-
proximately tends to B ∝ ρ0.5.

• The supersonic nonlinear flows significantly re-
duce the timescale of collapsing core formation in
subcritical clouds. It is of order several × 106 years
for typical parameters, or ∼ 10 times less than found
in the linear initial perturbation studies.

To see how accelerated ambipolar diffusion can
occur, we consider the magnetic induction equation

∂B

∂t
= ∇× (v ×B) +∇×

[

τni

cρ
(j × B) × B

]

, (4)

where v is the velocity, B is the magnetic field, and
j = (c/4π)∇×B is the electric current density. Our
assumption of ionization balance (ni ∝ n1/2) can be
used to estimate the diffusion time τd ∝ ρ3/2L2/B2,
where L is the gradient length scale introduced by
the initial turbulent compression and B is the mag-
netic field strength. Because the compression by the
nonlinear flow is nearly one-dimensional, the mag-
netic field scales roughly as B ∝ L−1 within the flux
freezing approximation. If the compression is rapid
enough that vertical hydrostatic equilibrium cannot
be established (unlike in previous calculations us-
ing the thin-disk approximation), then ρ ∝ L−1 as
well (i.e., one-dimensional contraction without verti-
cal settling), and τd ∝ L5/2. This means that diffu-
sion can occur quickly (and lead to a rapidly rising

value of β) if the turbulent compression creates small
values of L. If diffusion is so effective during the
first turbulent compression that a dense region be-
comes magnetically supercritical, then it will evolve
directly into collapse. Alternately, the stored mag-
netic energy of the compressed (and still subcritical)
region may lead to a reexpansion of the dense region.
The timescale for this, in the flux-freezing limit, is
the Alfvén time τA ∝ Lρ1/2/B, which scales ∝ L3/2

for the above conditions. Thus, τd decreases more
rapidly than τA, and sufficiently small turbulent-
generated values of L may lead to enough magnetic
diffusion that collapse occurs before any reexpan-
sion can occur. See Elmegreen (2007) for some simi-
lar discussion along these lines. Ultimately, whether
or not reexpansion of the first compression can oc-
cur depends on the strength of the turbulent com-
pression, mass-to-flux ratio of the initial cloud, and
neutral-ion collision time.

If reexpansion of the initial compression does oc-
cur, as in the standard model presented in this pa-
per, then there is enough time for the vertical struc-
ture to settle back to near-hydrostatic equilibrium,
in which case B ∝ ρ1/2. Since the compressed and
reexpanded region executes oscillations about a new
mean density, it is convenient to analyze the scal-
ings in terms of the density ρ. The diffusion time
now scales as τd ∝ ρ−1/2. This yields a scaling of
τd that is the traditionally used one (and is satisfied
by design in the thin-disk approximation). However,
the diffusion occurs more rapidly than it would in
the initial state due to the elevated value of ρ in the
compressed but oscillating region (see Figure 8).
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