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THE MYTH OF THE IMF

J. Melnick1

RESUMEN

El mito en la ciencia es la idea de que un fenómeno complejo en la naturaleza es reducible a un conjunto de
ecuaciones basadas en las leyes fundamentales de la f́ısica. El mito de la IMF se refiere a la noción de que la
distribución observada de las masas estelares al formarse (la IMF) puede y debe ser explicada por cualquier
exitosa teoŕıa de formación estelar propuesta. En esta contribución se argumenta que la IMF es el resultado
de una evolución compleja del medio interestelar en galaxias y por ende, la IMF preserva muy poca o ninguna
información sobre la f́ısica detallada de la formación estelar. El tratar de inferir la f́ısica de la formación estelar
de la IMF seŕıa como ¡si se quisiera intentar entender la personalidad de Beethoven del espectro de potencia
de la Novena Sinfońıa!

ABSTRACT

The Myth of Science is the idea that complex phenomena in Nature can be reduced to a set of equations
based on the fundamental laws of physics. The Myth of the IMF is the notion that the observed distribution
of stellar masses at birth (the IMF) can and must be explained by any successful theory of star formation.
In this contribution I argue that the IMF is the result of the complex evolution of the interstellar medium
in galaxies, and that as such the IMF preserves very little information, if any, about the detailed physics of
star formation. Trying to infer the physics of star formation from the IMF is like trying to understand the
personality of Beethoven from the power-spectrum of the Ninth Symphony!

Key Words: ISM: structure — stars: formation — stars: luminosity function, mass function

1. INTRODUCTION

The coincidence of the main characters of ancient
myths across the earth indicates that these myths
describe some universal beliefs of primitive human
societies. While there is consensus that stars and
planets were a critical factor in the genesis of old
Egyptian, Greek, and Central and South American
myths, some scholars have gone one (important) step
further to claim that mythology was the technical
language used by ancient civilizations to describe
their experience of the starry skies. In particular,
in Hamlet’s Mill the historians Giorgio de Santillana
and Hertha von Dechend claimed that the myths
of different ancient civilizations in far apart places
of the earth actually describe the precession of the
equinoxes. This of course implies that the preces-
sion was already known several thousand years be-
fore Hipparchos, which is difficult to believe but also
rather difficult to refute. The first Ziggurats and
their astronomer-priests appeared in Mesopotamia
more than 5000 years ago, and surely these ancient
peoples were keen observers that could have no-
ticed that stars never returned to the same place,
but this requires precision measurements over many

1European Southern Observatory, Karl Schwarzschild Str,
2, Garching, D85748 Germany (jmelnick@eso.org).

decades. Closer to Huatulco, the myths and codices
of the aboriginal Meso- and South-American indige-
nous peoples tell us that their social structures and
lives were strongly influenced –if not determined– by
the stars. Interestingly, the Inca myth of Viracocha
(literally the ‘Tilted Plane of the Sphere’) suggests
that indeed the Incas knew about the precession of
the equinoxes, but the Incas and also the Zapotecs,
Toltecs, and Mayas built their elaborate astronomi-
cal observatories on sacred places within a few hun-
dred years (but probably after) of the time when Hip-
parchos ‘discovered’ the precession of the equinoxes.

The purpose of this lengthy excursion into the
depths of mythology is to introduce the notion that
perhaps then as now –always– the human endeavors
have been influenced by the stars, not only through
astrological pursuits such as Kepler’s Harmonices
Mundi, but at a more subtle cultural level 2. With
this in mind, allow me, oh gentle reader (only gen-
tle readers read conference proceedings anyway), to
refer to the main scientific theories as the modern
myths of humanity. The central modern myth of as-
tronomy is of course the standard Big-Bang model
with all its dark ramifications — dark matter, dark

2Although it is difficult to conceive a greater revolution of
the human spirit than that entrained by Kepler’s laws.
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22 MELNICK

energy, and inflation. In this homage to Luis, I would
like to talk about yet another myth of astronomy,
which I call The Myth of the IMF.

The story told by the Myth of the IMF is that we
can build from first principles a theory that fully de-
scribes the physics of star formation and in particular
that predicts exactly the observed mass distribution
of stars at birth. In other words, starting from a
molecular cloud of a certain mass and chemical com-
position 3, we can predict from first principles how
many stars of a given mass will be formed out of that
cloud (assuming of course that the cloud would form
stars at all!). While it is tempting to generalize this
myth to other branches of astronomy dealing with
equally complex processes, I will stay here with the
IMF.

The central theme of this presentation is the
observation that the mass distribution of stars at
birth –the initial mass function (IMF)– appears to
be a universal function that within the substantial
errors of observation is very well represented by a
single power-law for masses larger than a rather ill-
determined threshold around ML ' 1 M�. In other
words, that for masses larger than ML, the slope or
exponent of the power-law is the same everywhere.
Thus,

N(m)dm = mαdm

with the same value of α everywhere. Historically
this universal IMF is called the Salpeter power-law
after the work of Ed Salpeter4 in the early 50’s who
found a value of α = −2.35. I bring back this well
known fact to underline the first property of the
Salpeter IMF: More than 50 years after Salpeter’s
seminal work, it remains essentially unchanged de-
spite the monumental changes in technology that
have transformed astronomy: CCD’s, Space tele-
scopes, 4m and 8m telescopes, and adaptive optics!
In fact, I will show in this presentation that the best
determined IMF using the best modern equipment
gives a slope α = −2.25±0.05 for the Salpeter slope.

After reviewing the observational evidence for a
universal IMF, both in clusters and in the field, I will
briefly review some ideas of why the IMF is universal,
and what does it tell us about star formation: The
Myth of the IMF.

2. THE IMF OF CLUSTERS

The steep decline of the IMF toward large masses
inevitably leads to the Poisson catastrophe: unless

3One may also need to specify the initial internal kinemat-
ics of the cloud.

4Ed Salpeter passed away when I was completing this
manuscript, which is dedicated to his memory as well as to
Luis Carrasco’s Long Walk through Astronomy.

Fig. 1. Comparison of HST WFPC (left), HST NICMOS
(right), and MAD VLT (mid) images of the central part
of 30 Doradus. Notice that the figure shows only a small
portion (∼ 10′′

× 10′′)0 of the MAD image that covers
an area about 6 times larger (Courtesy of C. Evans. See
Campbell et al. 2008).

you have a very large number of stars, you will have
very large counting errors in the highest mass-bins.
One can do two things: either count stars in a large
field of a galaxy, or count stars in a very massive clus-
ter. The fundamental limitation of the first approach
(which is the one used by Salpeter in the Milky-Way)
is that one gets a wide mix of ages, so one must as-
sume a history of star-formation to retrieve the IMF.
The fundamental limitation of the second approach
is that there are only a handful of massive young
clusters that can be resolved using the current gen-
eration of ground and/or space telescopes. But a
handful is much better than none, so in the second
case the limitation is mostly technical, although at-
tention must still be given to the fact that however
young these clusters may be, their ages are still not
zero.

The most massive young clusters in the Galaxy
are of course located close to the galactic plane and
therefore suffer substantial foreground (and some in-
ternal) extinction. Still, using large telescopes with
Adaptive Optics (AO) instruments working in the
near-IR it is possible to penetrate the dust clouds
and to resolve the clusters from the ground, and of
course HST with NICMOS can do a similar job from
space. Thus, it has been possible to obtain high qual-
ity photometry for the most massive young clusters
in the Milky-Way, which together with 30 Doradus
in the LMC provide a reasonably large sample of
clusters from which the IMF can be reliably deter-
mined up to about ∼ 120 M� or so. Here I will
present a more detailed review for the 3 clusters in
which I have worked, and which illustrate different
aspects of the observational challenges one faces in
the determination of the IMF in young massive clus-
ters, and I will summarize the relevant parameters
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THE MYTH OF THE IMF 23

Fig. 2. The IMF of 30 Doradus from a combination of
HST and NTT data. The open circles show the data
corrected for crowding and magnitude-limit incomplete-
ness biases. The solid triangles show the raw counts, and
the solid squares show the raw counts corrected only for
crowding. The dominance of the magnitude-limit effect
in the lowest mass bins is manifest in this plot. The solid
line shows a least squares fit of slope α = −2.25 ± 0.05
(from Selman et al. 1999).

of the complete sample based on my own reading of
the published observations.

2.1. 30 Doradus

The ionizing cluster of the Tarantula nebula is
the most massive cluster in the sample and also
the best studied so it is appropriate to start the
discussion with 30 Dor. Figure 1 reproduces the
central portion of a multi-conjugate adaptive optics
(MCAO) K-band image of 30 Dor taken with MAD
on the VLT. The figure illustrates how for some ap-
plications the current generation of AO assisted im-
agers on large ground based telescopes can parallel
and even surpass HST. In particular, the full MAD
image of 30 Dor (not shown here) covers an area
about 6 times larger than NICMOS at a similar res-
olution. In fact, working at a resolution better than
0.1′′ over a field of almost 4 square minutes poses
tough calibration challenges both for the photome-
try and the astrometry and for that reason the anal-
ysis of the MAD data is still in progress, so in what
follows I will present mostly published results.

Figure 2 shows the IMF of 30 Dor from Selman et
al. (1999) obtained from a combination of HST and
NTT data. The figure illustrates the first important

Fig. 3. Radial velocity histogram for 48 O stars in 30
Doradus. The radial velocity dispersion of these stars is
∼ 30 km s−1, much larger than the value of < 10 km s−1

expected from the photometric mass of the cluster (from
Bosch et al. 1999).

observational challenge we encounter when trying to
measure the IMF of massive young clusters: the ex-
tinction varies significantly from star to star (up to
2 magnitudes in V for 30 Dor) giving rise to statis-
tical completion corrections much larger than those
resulting from crowding. Because of variable extinc-
tion, photometric completeness does not ensure com-
pleteness in mass as two stars of the same mass and
spectral type can have widely different magnitudes
and colors. We call this effect the magnitude-limit
bias. The best fit line shown in the figure has a
slope of α = −2.25 ± 0.05 for M > 3 M�.

The total photometric mass of the cluster is in
principle easy to obtain: just integrate the IMF be-
tween the lower and upper mass limits. In practice
this is not so easy because we know that (for other
clusters, not for 30 Dor) the IMF turns over at a
mass ML ∼ 1 M�: the slope changes. We still do
not know the exact shape of the IMF below this mass
limit, or whether it is the same from cluster to clus-
ter, and we will probably never know because low-
mass stars easily evaporate from the cluster. Thus,
for the present purposes I will determine total masses
integrating the power-law from ML = 0.5 M� to
MU = 120 M�. The resulting value for 30 Dor is
Mphot = 1.6 × 105 M�. This number is relevant
because the mass is the fundamental property of a
cluster, but it also has a second equally relevant ap-
plication to the study of the IMF.

Figure 3 shows the velocity dispersion of the clus-
ter based on MOS spectra taken with EMMI at the
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24 MELNICK

Fig. 4. Three-color (JHK) image of Arches taken with
the AO imager NACO on the VLT. The field of view is
28′′ (from Espinoza et al. 2009).

NTT (Bosch et al. 1999). After correction for instru-
mental errors, the velocity dispersion of the cluster
comes out to be σV = 30.5 ± 0.2 km s−1, which
is much larger than the Virial value inferred from
the photometric mass and the critical radius of the
cluster. This means that either the cluster is flying
apart at a very large rate i.e. is not virialized, or that
the measured velocities are dominated by something
else: binaries. Bosch et al. (1999) simulated the
effect of binaries and concluded that the observed
velocity dispersion can be explained if most of the
massive stars in the cluster are binaries. Recently,
Bosch et al. (2008) obtained multi-epoch radial ve-
locity observations of 50 O and B stars in the cluster
and concluded that about 50% of the observed stars
are binaries consistent with an intrinsic binary rate
of 100% among massive stars in the cluster. Re-
stricting the sample to their 26 non-variable stars,
Bosch et al. (2008) obtained a velocity dispersion of
8.3 km s−1 for the cluster. The critical radius of the
cluster is not well determined, but assuming a value
of 5pc (Selman et al. 1999), the Virial mass comes
out to be Mvir ' 2.3×105 M�, consistent within the
large uncertainties with the photometric mass. The
MAD data will allow us to obtain a better estimate
of the critical radius and thus to use the comparison
between the dynamical and photometric masses to
obtain some constraints on the lower-mass shape of
the IMF. The observations of Bosch et al. however,
raise a rather fundamental problem: so far, we have
not considered binarity in the determination of the

IMF of 30 Dor and in fact of any cluster. Now this
becomes a must.

In addition to variable extinction and binarity,
there is a third ingredient that complicates the ob-
servation of the IMF: mass segregation. In 30 Dor
the most massive stars appear to be more concen-
trated towards the center of the cluster. It is not
clear whether this effect is due to dynamical evolu-
tion — which should not be observed in very young
clusters such as 30 Dor, or to primordial segregation
(massive stars form predominantly in the densest re-
gions). Whatever the origin, mass segregation will
cause radial variations in the IMF. These are not
observed in 30 Dor, or at least not strongly, but the
MAD data will allow a further insight into the prob-
lem. I will return to this issue in the next section
where I will also discuss a particularly insidious prob-
lem with the photometric calibration of photometry
of reddened stars we ran into in our study of 30 Do-
radus.

2.2. The Arches cluster

Arches is one of the 3 famous massive young clus-
ters with a few tens of parsecs from the Galactic Cen-
ter. The others are the Central Cluster (GCC) itself,
and the Quintuplet Cluster. Both Arches and GCC
have been claimed to have anomalous (flatter than
Salpeter) IMF’s, which because they are in a much
denser environment than say 30 Dor, could lead to
the discovery of the holy grail of star formation: a
relation between the IMF and at least some physi-
cal parameter, in this case ISM pressure. Of course
these three clusters are hidden behind tens of mag-
nitudes of visual extinction and therefore can only
be studied in the infrared. Moreover, they are ex-
tremely dense so they must be studied either from
space, or using state of the art AO imagers. The
claim of a non-Salpeter IMF comes from a number
of NICMOS and ground-based AO studies pioneered
by Figer et al. (1999) using NICMOS. None of these
investigations, however, accounted properly for the
magnitude-limit bias, which is particularly severe in
the Galactic center clusters. Thus, we re-observed
Arches using the VLT AO imager NACO taking ad-
vantage of the then newly commissioned infrared
wavefront sensor that is particularly important for
highly reddened objects. Figure 4 reproduces our
three-color (JHK) NACO image of the Arches and
provides a full color illustration of the complexities
of the field in terms of dynamic range and crowding.

But the problems only start there: the deeper
one goes in the analysis of the data, the subtler the
problems become. Figure 5 shows a Voronoi diagram
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THE MYTH OF THE IMF 25

Fig. 5. Voronoi diagrams of the cluster reddening ob-
tained with two different methods as described in the
text. The extinction is seen to vary by as much as 5
magnitudes in K from star to star (from Espinoza, Sel-
man, & Melnick 2009).

depicting the distribution of reddening in the cluster
constructed as follows: the area around each star was
tesselated in such a way that the borders of each cell
are equidistant to the nearest star for which photom-
etry is available. Two sets of tesselations are shown
depending on whether three (JHK; top) or only two
(HK; bottom) bands are used to compute the redden-
ing. Each cell in these Voronoi diagrams is shaded
by a tone of gray proportional to the reddening of
its parent star as indicated in the central bars. The
cluster stars are shown in the upper-left panel where
the blue dots represent stars with JHK photometry
and the red dots stars with only HK measurements.
The extinction is seen to vary up to 5 magnitudes
in K from star to star. (Espinoza, Selman, & Mel-
nick 2009). Of course these are variations of the
foreground extinction to the cluster and reflect the
Fractal structure of the ISM: large fluctuations are
observed at essentially all spatial scales.

30 Doradus lies at a high galactic latitude so the
extinction variations are mostly internal to the clus-
ter and caused by the dust that is intimately mixed
with the gas in the Tarantula Nebula. Thus, in
30 Dor the distribution of extinction has a full width
at half maximum of ∆AV ' 1 mag with maximum
fluctuations of about 2 magnitudes. In Arches the K-
band distribution is significantly broader, so we ex-
pect the magnitude-limit bias to be more severe, and
indeed it is. In order to correct for this bias we need
to know the reddening distribution in the cluster,

Fig. 6. The IMF of the three ‘annuli’ in the clus-
ter defined in Figure 5. The different symbols show
the raw counts (triangles); counts corrected for crowd-
ing (squares) and counts corrected for crowding and
magnitude-limit bias (open symbols). For the faintest
bins the magnitude-limit corrections can be more than a
factor of 10! The overall IMF corresponds to the region
r < 0.4pc for which the field contamination is minimal
(from Espinoza et al. 2009).

which in principle can be a function of position (our
Voronoi diagrams suggest that the reddening may be
systematically larger in the direction of the Galac-
tic Center – lower-right). And we also need to know
the extinction law. All this is compounded with the
fact that the transformation to any standard photo-
metric system is based on unreddened stars, which
introduces a subtle but noticeable effect on very red-
dened clusters that must be considered. So it is much
cleaner to work in the natural photometric system of
the instrument, which of course leads to other prob-
lems, in particular with the theoretical models.

To make a long story short, once all these prob-
lems are carefully and some times painfully taken
into account, and the corrections for crowding are
computed as a function of magnitude, color, and dis-
tance to the cluster center, one finally gets the IMF’s
shown in Figure 6.

As observed by previous authors, the IMF slope
gets flatter towards the cluster center, providing
strong evidence of dynamical evolution, but our over-
all slope (r < 0.4 pc) is steeper than previously
thought, and consistent with Salpeter (30 Doradus):
α = −2.1 ± 0.2, albeit with a significant error.
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26 MELNICK

Fig. 7. MAD K-band image of NGC3603. The resolu-
tion of this image if comparable to that of WFPC and
NICMOS on HST. (Courtesy of Joao Alves.)

The fundamental reason for our steeper slope is the
magnitude-limit bias.

2.3. NGC 3603

To conclude the tour of massive young clusters
I will make a short stop at NGC 3603 to illustrate
yet another insidious effect in the observation of the
IMF of young clusters: the pre-main sequence pop-
ulation. Figure 7 shows a MAD image of the cluster
that illustrates the power of modern AO-assisted im-
agers on large telescopes: NICMOS resolution with
10 times the field.

As we saw for 30 Dor and Arches, it is rather
difficult to break the ‘one solar-mass barrier’ and
to reach stars considerably fainter than a couple
of solar masses. This is not only a problem of
crowding and exposure time. Figure 8 shows the
JK color-magnitude diagram of NGC 3603 obtained
by Harayama, Eisenhauer, & Martin (2008) using
NACO on the VLT. The various lines show main-
sequence and pre-main sequence tracks of different
ages as indicated in the figure. We see that in young
clusters the low mass stars are still in the pre-main
sequence, and it seems that tracks of a single age
do not fit the locus of these stars: different ages are
required to fit stars of different masses, in the case
of NGC 3603 ages ranging from 0.3 Myr to 3.0 Myr.
This is a big problem for which there is no good so-
lution yet. The slope of the IMF depends on what
age one assumes, and Harayama and collaborators

Fig. 8. The JK color-magnitude diagram of NGC 3603.
Stars of mass M ≤ 2 M� are still in the pre-main
sequence phase and seem to have different ages (from
Harayama et al. 2008).

have resorted to tabulating their results as a func-
tion of age. The value I have chosen, α = −2.0± 0.2
corresponds to an age of 1 Myr.

2.4. The IMF of Clusters

The previous sections show that even for the best
studied young massive clusters in the Galaxy and the
Magellanic Clouds, which have thousands of massive
stars, and after tackling the formidable observational
challenges with state of the art instruments and com-
putational techniques, we are still left with a number
of fundamental sources of uncertainty: binaries, dy-
namical evolution, and pre-main sequence tracks. So
the compilation of the results for the most massive
young clusters from the literature presented in Ta-
ble 1 must be taken with a grain of salt.

The only cluster besides 30 Dor for which an es-
timate of the dynamical mass has been attempted is
Westerlund 1 for which Mengel & Tacconi-Garman
(2008) give a value of MDyn = 1.5×105 M� based on
spectroscopy of 10 (red) supergiants. This is 5 times
larger than the photometric mass given in Table 1,
and provides a strong indication that the population
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TABLE 1

GLOBAL PROPERTIES OF YOUNG MASSIVE
CLUSTERS

Cluster Dist. Age Massa IMF

[kpc] [Myr] [M�] [-α]

30 Dor 52 2-3 1.6 × 105 2.25 ± 0.05

Arches 8 2-3 2.0 × 104 2.1 ± 0.2

NGC 3603 6-8 0.3-3 2.5 × 104 2.0 ± 0.2

Trumpler 14 2.8 0.5-6 104 2.4 to 3.0

W49A 11.4 0.5 ± 1 1.4 × 104 2.6 ± 0.3

Westerlund 1 3.6 4-5 3 × 104 2.3

Westerlund 2 3-8 2 ± 1 5 × 103 2.20 ± 0.16
aPhotometric mass assuming a single power-law between
0.5 and 120 M�.

of massive stars in Westerlund 1 may also be domi-
nated by binaries. Notice that because Westerlund 1
is significantly older than 30 Dor, we are probing a
population of lower-mass binaries.

The table shows that the best observed massive
young clusters in the Galaxy and the Magellanic-
Clouds have IMF’s formally indistinguishable from
the Salpeter power-law. So within the still large un-
certainties discussed below, the observations are con-
sistent with the hypothesis that the IMF of clusters
is a universal function, which is best determined for
30 Doradus at least in the mass range M > 3 M�.
In fact, there is evidence from NICMOS photometry
(Zinnecker, private communication) that the power-
law IMF of 30 Dor does not show a turn-over down to
at least ML ∼ 0.5 M�, (but remember that in that
mass-range most, if not all, stars are still in the pre-
main sequence where the uncertainties are severe). It
is therefore appropriate to revise the ‘Salpeter’ slope
from α = −2.35 to the 30 Doradus slope, α = −2.25.

3. THE FIELD

If all (or at least most) stars form in clusters then
most field stars must be remnants of dissolved clus-
ters. Since clusters have a power-law distribution
of slope β ∼ −2 [N(M)dM = MβdM where M is
the mass of the cluster] some authors have claimed
that the IMF of the field should be steeper than the
IMF of clusters. In other words, galaxies should have
steeper IMF’s than stellar clusters (e.g. Kroupa &
Weidner 2003). Their reasoning is that since clusters
cannot contain stars more massive than the clusters
themselves, and since there are many more low-mass
clusters than massive ones, the dissolution of a pop-
ulation of clusters should build a field with more
low mass stars. I will show below that this argu-
ment is wrong, but even if it were right, the cluster

Fig. 9. The probability distribution of maximal stellar
mass for β = −2. The points correspond to the sam-
ple of clusters by Weidner & Kroupa (2006) with a few
additions (see Melnick & Selman 2008 for more details).

slope β would have to be much steeper than observed
(β ∼ −2) for the effect to be noticeable at all (e.g.
Elmegreen 2006). And of course, the observations of
Salpeter himself were done in the field! In fact, the
IMF of the field is observed to be indistinguishable
from Salpeter (Selman & Melnick 2005), but remem-
ber the grain of salt!

We can explore this issue further by asking a dif-
ferent and probably more fundamental question: do
clusters sample a Universal stellar IMF? This ques-
tion was asked by Weidner & Kroupa (2006) who
concluded that the statistics of the most massive
stars in clusters was not consistent with the view
that clusters randomly sample a Universal stellar
IMF. The problem, however, turns out to be rather
tricky. Figure 9 shows the Weidner-Kroupa plot re-
calculated by Fernando Selman and myself (2008)
using a different algorithmic approach.

We obtain the same result as Weidner & Kroupa:
the observations (dots) do not scatter throughout
the figure as expected if clusters randomly sample a
Universal IMF, but tend to concentrate towards the
lower maximal star masses allowed by the model. To
illustrate this point better we have plotted a verti-
cal line at log M/M� = 1.8. The contours show
clusters of equal numbers of stars and the contour
corresponding to a cluster of log M = 1.8 has two
maxima: one at log m∗

max ' 0.9 and the other at
log m∗

max ' 1.7 close to the total mass of the clus-
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ter. The clusters from the compilation of Weidner &
Kroupa (2006) shown in the figure concentrate in the
region defined by the first (lower mass) peak and do
not cover the full mass range allowed by the models.
In other words, small clusters dominated by one or
at most a few high mass stars do not seem to exist,
or at least are not included in Weidner & Kroupa’s
sample. (Note that the ridge defined by the observa-
tions is not a physical correlation but a size of sample
effect: the most massive stars live in the most mas-
sive clusters so the contours get shorter and shorter
for more massive clusters.)

Fernando and I have looked at the problem from a
different perspective: instead of characterizing clus-
ters by their total mass, we chose to characterize
them by their total number of stars n. The impor-
tant advantage of this approach is that for small clus-
ters (which are the crucial objects in this problem)
the functional form of the IMF must depend on the
cluster mass because the IMF cannot sample stars
more massive than the clusters themselves, whereas
if clusters are characterized by total number of stars,
only the normalization of the IMF depends on n, but
not the functional form. So the IMF of the field built
by the disruption of clusters is simply given by,

P (m) =

∞∑
m=0

P (m|n)P (n) 1

where P (m) is the field IMF (the probability of find-
ing a star of mass m), and P (m|n) is the cluster
IMF, that is the probability of finding a star of mass
m in a cluster of n stars. P (n) is the distribution of
clusters by number of stars, which is also a power-
law of slope β (Oey et al. 2004). Since only the
normalization of P (m|n) depends on the number of
stars but not the slope, if P (m|n) is Salpeter, P (m)
is also Salpeter. The same conclusion does not hold
if clusters are characterized by mass. In that case,

P (m) =

∫ ∞

0

P (m|M)P (M)dM 2

but now while P (M) is still a power-law, P (m|M)
is Salpeter only for very massive clusters (because it
must have a cut-off for m > M). If P (m) is Salpeter,
then we can calculate P (m|M) inverting Equation 2,
and indeed we get functions which are not power-
laws, but rather complicated functions (that in fact
explain why the contours in Figure 9 have two max-
ima; Selman & Melnick 2008).

So if clusters are Salpeter, the field resulting from
the dissolution of clusters must also be Salpeter; not
approximately, exactly. Let us now return to the

Fig. 10. The analytical stellar IMF used in the Monte-
Carlo experiments compared with the IMF of the Trapez-
ium cluster from the literature (from Melnick & Selman
2008).

random-sampling question. The trouble with the
maximal mass statistics is that cluster selection ef-
fects are acute, and the results depend on how clus-
ters are defined. The white dot in Figure 9 show
an example of a different definition (see Selman &
Melnick 2008 for details). So we decided to use an
independent test for validating or falsifying the ran-
dom sampling model. We used the complete sample
of young embedded clusters by Lada & Lada (2003)
to test our models.

Lada & Lada compiled a catalog of embedded
clusters with more than 35 stars from the literature,
so their sample is ideal for our purposes as described
above. Moreover, the Lada & Lada clusters sample
the critical range of masses, that is, clusters with
masses in the single-star range (i.e. smaller than
a few hundred solar masses). Our test consists in
reproducing the observed mass function of embed-
ded clusters by sampling randomly a universal stel-
lar IMF. Since we are dealing with (small) clusters
dominated by low-mass stars, it is critical to sample
the full IMF, and not only the power-law massive
star regime. Therefore we fitted an empirical an-
alytical formula to the observed IMF of the Orion
Trapezium cluster forcing it to be Salpeter between
1 < M/M� < 120. Our ‘analytical’ universal IMF is
shown in Figure 10.

Using this IMF we computed a large number of
Monte-Carlo models drawing each time 72 clusters
of more than 35 stars to match the selection param-
eters of the Lada & Lada catalogue. The results are
shown in Figure 11 using the same representation
as Lada & Lada, which gives the total mass of the
clusters rather than the total number of stars. In
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this representation, a power-law cluster mass func-
tion of slope −2 gives a flat distribution. We find
excellent agreement between our models and the ob-
servations except for the mass bins at log M ∼ 0.95
and log M ∼ 3.5, which are totally de-populated in
the Lada & Lada catalogue. Lada & Lada proposed
that the downturn they observed at smaller masses
was evidence for a favored cluster formation mass
scale at around Mcl ∼ 50 M�, but our models in-
dicate that this downturn is naturally explained by
the cutoff in n (n ≥ 35) they introduced in an other-
wise scale-free spectrum. There is no need therefore
to invoke a special cluster formation scale. In fact,
Figure 11 indicates that the data is best modeled by
a cutoff somewhat larger than the n > 35 criterion of
Lada & Lada to select clusters (see Selman & Mel-
nick 2008 for more details). So not only do our mod-
els reproduce the observations very well, but they
also show considerable predictive power, leading us
to conclude that indeed clusters form by randomly
sampling a universal stellar IMF. This leads to an
apparent impasse between our results and the max-
imal mass star statistics discussed above. Weidner
& Kroupa resorted to the ad-hoc assumption that
stars from in an ordered fashion (with less massive
stars forming first) to reproduce the observations,
but there are other alternatives. Besides the selec-
tion effects introduced by the definition of clusters
and cluster-boudaries discussed above, another pos-
sibility is that small clusters dominated by one or
a few massive stars can be gravitationally unstable.
The jury is still out, but this is an important issue
that new observations and/or new n-body simula-
tions should help to answer.

An interesting corollary of our random-sampling
models is that the IMF may be universal over the
whole range of stellar masses, not only for massive
stars.

4. FRACTALS

Power-laws are intimately related to Fractals and
molecular clouds have Fractal structures. Elmegreen
(1997) noticed that the mass distribution of clumps
in a Fractal molecular cloud is a power-law of slope
exactly equal to −2 and explored this remarkable
similarity with the Salpeter law. The Fractal slope
is also very close to distribution function of stellar
clusters. The left panel of Figure 12 shows a cartoon
of a Fractal cloud: the entire cloud is made of three
big clumps each of which is made of three smaller
sub-clumps that in turn consists of three even smaller
clumps each and so on all the way down to the small-
est structures in the cloud. We may imagine that we

Fig. 11. The Lada & Lada (2003) distribution of masses
of embedded clusters together with our Monte-Carlo
simulations in which we randomly sample the stellar
IMF assuming cluster probability distributions of slope
β = −1.8 (top); β = −2.0 (middle); and β = −2.2 (bot-
tom). The left-panels are for n ≥ 35 and the right-panels
for n ≥ 75 stars (from Melnick & Selman 2008).

observe the cloud with higher and higher resolution
that reveals finer and finer structures. Clumps may
be stars or clusters. The right panel of Figure 12
shows a representation of our Fractal cloud as a Hi-
erarchical tree. Elmegreen showed that sampling the
tree at random (to convert gas into stars) steepens
the resulting mass distribution of stars. The steep-
ening arises from two effects: (1) when a clump is se-
lected all the hierarchy further down from that clump
is erased; and (2) smaller clumps are denser and col-
lapse faster so must be sampled more frequently. The
first effect steepens the resulting stellar mass func-
tion from −2 to ∼ −2.15, while the second requires
some assumption about the collapse time and the
Fractal dimension of molecular clouds. Using stan-
dard values, Elmegreen recovered the Salpeter IMF
with almost no physics: pure statistics!

If the Fractal clumps are clusters instead of stars,
then the Fractal slope gives directly the observed
mass distribution of clusters without any assump-
tion about the physics of star formation except of
course that the mass of the cluster be proportional
to the initial mass of gas. Bruce Elmegreen has
pointed out that fragmentation of the smallest proto-
stellar molecular cores may explain the turn-over in
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Fig. 12. (left) Cartoon of a fractal molecular cloud. (right) Hierarchical tree of the Fractal cloud shown in the left-panel.
For simplicity the hierarchy was drawn with three branches per level for every level, but the results discussed in the
text are valid for an arbitrary number of branches per level varying from level to level and from branch to branch.

the IMF below some threshold mass. But already
in the gas-phase the mass distribution of molecular
cores is observed to be a log-normal function and
not a power-law (or perhaps a log-normal with a
power-law tail; e.g. Enoch et al. 2008, and refer-
ences therein). And again log-normal functions arise
from the statistics of fragmentation trees, although
in this case some assumptions need to be made about
the probability of fragmentation at each level of the
hierarchy.

5. CONCLUSION

The central premise of this presentation is that
the universality of the IMF stems from the Fractal
structure of the interstellar medium, and therefore
does not depend (or depends very weakly) on the
physics of star formation. The Fractal structure of
the ISM results from the complex process of forma-
tion and evolution of galaxies and the recurrent feed-
back of many generations of stars on the ISM, and of
the ISM on the mass distribution and spatial struc-
ture of stars. In a famous Scientific American article,
Martin Gardner (1978) popularized the work of Voss
and Clarke on the power spectrum of classical music.
The spectral power density of classical music follows
a 1/f law, which is now well understood (it was less
known in 1975, but still known) to reflect fractality
in the time-domain (e.g. Mandelbrot 1977). Thus,
trying to learn about the physics of star formation
from the IMF is like trying to understand the per-
sonality of Beethoven from the power spectrum of
the Ninth Symphony!

Apparently every form of beauty in Nature or
Art has an underlying Fractal structure (Mandelbrot
cited by Gardner). This may also apply to astronom-
ical objects: the beauty of star clusters and galaxies
could be related to their underlying Fractal struc-
tures. Stars form in a hierarchy of structures with
different numbers and masses. Some of these struc-
tures end-up forming large clusters and some don’t:
they become small associations formed in neighbor-
ing regions almost by chance. All stars form in Frac-
tals, but only some form in clusters.

The Long Walk

I met Luis Carrasco in the early 80’s when I was
beginning to think about the IMF. Luis was spending
a sabbatical in Heidelberg and had come to Munich
to give a seminar on his work on angular momentum.
After the talk and the many questions was over, I in-
troduced myself and we instantly became friends, a
friendship that continues until know. We have even
authored a paper together that was based on some
work we did during that short visit of Luis to Mu-
nich, and after surviving an incredible adventure in
the frozen highways of Bavaria when we drove to
Heidelberg to fetch the plates of M82 that were used
for that paper. Already then Luis was thinking of
IR instrumentation, and some time later he began
to think of a large mm-wave telescope for Mexico,
which eventually became the GMT. I thank the or-
ganizers for inviting me to participate in the celebra-
tion of Luis’s long walk through astronomy. It has
been a pleasure and a privilege to be here.
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