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IMAGING AND MODELING RAPID ROTATORS: α CEP AND α OPH

M. Zhao,1 J. D. Monnier,1 E. Pedretti,2 N. Thureau,2 A. Mérand,3,4 T. ten Brummelaar3 H. McAlister,3
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We present sub-milliarcseond resolution

observations of two nearby rapid rotators α

Cephei and α Ophiuchi, obtained with the

CHARA array. We reconstruct an aperture

synthesis image for α Cep. We also construct

gravity darkening models for both stars and

precisely determine their geometry, polar

and equatorial radii and temperatures, as

well as their fractional rotation speed.

A large fraction of hot stars are rapid rotators
with rotational velocities more than 120 km s−1 (Abt
& Morrell 1995; Abt et al. 2002). The centrifugal
force from rapid rotation makes a star oblate and
causes the “Gravity Darkening” phenomenon (von
Zeipel 1924a,b). It can also affect stars’ fundamental
properties such as luminosity, abundance, and evo-
lution (e.g., Pinsonneault 1997; Meynet & Maeder
2000; Maeder et al. 2007).

Although spectroscopy is the most basic and tra-
ditional way to study rapid rotators and has pro-
vided invaluable information about these stars, re-
solving the stellar surface with stellar interferometers
can provide more direct and further insight into the
basic properties of these stars, such as their geom-
etry, brightness distribution, and temperature, etc.
In recent years, long baseline interferometers have
studied several nearby rapid rotators, which have
not only confirmed the oblateness and the basic pic-
ture of gravity darkening, but have also found de-
ficiencies in the standard gravity darkening model,
suggesting the need for more detailed studies and
model-independent images of rapid rotators.

We thus observed two rapid rotators α Cep and α

Oph in 2006, using the CHARA array (ten Brumme-
laar et al. 2005) and the MIRC combiner (Monnier
et al. 2006). The details of our observations and data
reduction procedure and be found in (Monnier et al.
2007; Zhao et al. 2008).
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Fig. 1. Reconstructed Image of α Cep. The contours
show the local brightness temperatures of the stellar sur-
face. The total χ

2

ν
of the image is 1.10. The resolution

of the image is 0.68 milliarcsec.

The star α Cephei (α Cep, Alderamin, HR 8162,
V =2.46, H=2.13, d=14.96pc) is an A8V main se-
quence star (Gray et al. 2003). Figure 1 shows the
reconstructed image of α Cep (χν

2 = 1.10), obtained
with the MACIM application (Ireland et al. 2006).
The photosphere of the star is well resolved and ap-
pears elongated along the east-west direction. The
bright region at the bottom with Teff above 7000K
is later identified close to the pole and the dark belt
below 6500K is the equator — a direct confirmation
of the gravity darkening effect.

We also construct a Roche-von Zeipel gravity
darkening model for α Cep to fit the data, follow-
ing the prescription described in Aufdenberg et al.
(2006). Figure 2 shows the gravity darkening model
with a non-standard β of 0.22. The total χ2

ν
of

the model is 1.18. The model shows that α Cep
has an inclination of 55.◦7±6.◦2, a position angle of
−178.◦8±4.3, and a fractional angular rotation speed
of 94%. The polar temperature of α Cep is 8588K,
while its equatorial temperature is 6574K. Its polar
radius is 2.16±0.04 R�, about 21% smaller than its
equatorial radius, 2.74±0.04 R�. Assuming a mass
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Fig. 2. Gravity darkening model of α Cep. The contours
indicate the local brightness temperatures on the surface
of the star, overplotted with the temperature contours
from Figure 1. The model has a total χ

2

ν
of 1.18. The

resolution of the image is 0.68 milliarcsec.

Fig. 3. Gravity darkening model for α Oph. The con-
tours indicate the local brightness temperatures on the
surface of the star. The resolution of the data is 0.52
milliarcsec. The total χ

2

ν
of the model is 0.91.

of 2 M�, the model gives a Vsin i of 225 km s−1,
well within its observed range of ∼180 km s−1 to
∼245 km s−1 (e.g., Royer et al. 2007; Abt & Morrell
1995).

The star α Ophiuchi (α Oph, Rasalhague, HR
6556, V = 2.09, H=1.66, d=14.68pc) is a nearby

subgiant binary system (Lippincott & Wagman
1966). The primary is the subject of this study, and
is a A5IV subgiant (Gray et al. 2001). Its Vsin i

ranges from 210 km s−1 to 240 km s−1 (e.g., Abt &
Morrell 1995; Royer et al. 2002), implying it is spin-
ning at a significant fraction of its break-up speed
of ∼270 km s−1. Figure 3 shows the standard grav-
ity darkening model for α Oph, also using the von
Zeipel law as for α Cep. The model shows that the
photosphere of α Oph is also elongated and has two
bright polar areas and a dark equator. Its radius
at the equator is 2.87±0.02 R�, ∼20% larger than
that of the poles. It is seen nearly equator-on with
an inclination of 87.◦7 ± 0.◦4, and a position angle of
−53.◦9 ± 1.◦2. The star is rotating at 88.5% of its
break-up speed and the polar temperature is 9300K,
∼1840K hotter than that of the equator. Assum-
ing a mass of 2.1 M�, the model gives a Vsin i of
237 km s−1, also within its observed range. We have
also tried to fit a non-standard β model for α Oph.
However, because α Oph is nearly equator-on, β is
highly degenerate with the inclination, and higher
resolution observations are thus needed to lift the
degeneracy.
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