IONIZATION OF THE DIFFUSE GAS IN GALAXIES: HOT LOW-MASS EVOLVED STARS AT WORK

N. Flores-Fajardo,1 C. Morisset,1,2 G. Stasińska,2 and L. Binette1

The Diffuse Ionized Medium (DIG) is visible through its faint optical line emission outside classical H II regions (Reynolds 1971) and turns out to be a major component of the interstellar medium in galaxies. OB stars in galaxies likely represent the main source of ionizing photons for the DIG. However, an additional source is needed to explain the increase of \([\text{N} \, \text{II}] / \text{H}\alpha\), \([\text{S} \, \text{II}] / \text{H}\alpha\) with galactic height.

In this work we propose the following scenario: The extraplanar DIG is distributed in clouds (for simplicity represented by rectangles) that are ionized by two stellar populations. The radiation field from the OB stars embedded in H II regions escapes from the density bounded zones and ionizes the “bottom” parts of the gas clouds. The Hot Low-Mass Evolved Stars (HOLMES), which are distributed in the galaxy thick disk and halo, also contribute to the ionization of the clouds. Their influence with respect to that of OB stars increases away from the galactic plane. Figure 1 shows the details of the proposed scenario.

We chose to focus on the edge-on spiral galaxy NGC 891, a galaxy that has been extensively observed, especially in optical emission lines, thus providing the best diagnostics for our scenario. We used data from Otte et al. (2001).

The ionizing spectral energy distribution (SED) from OB stars is obtained using the code Starburst99 (Leitherer et al. 1999), considering continuous star formation. The SED of HOLMES is obtained using the code PEGASE (Fioc & Rocca-Volmerange 1997) considering a instantaneous starburst for a look back time greater than 10 Gyr. The photoionization models for the DIG were computed with Cloudy (Ferland et al. 1998). Each model is defined by the ratio \(\Phi_{\text{HOLMES}} / \Phi_{\text{total}}\), the ionization parameter \(U\), \(O/H\) and \(N/O\).

Our scenario, which considers both the population of OB stars and that of HOLMES, is able to explain the long standing problem of the ionization of the DIG. See Figure 2.

REFERENCES

Reynolds, R. J. 1971, PhD Thesis, Univ. of Wisconsin, USA