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NONSINGULAR COSMOLOGICAL MODELS

S. E. Perez Bergliaffa1

RESUMEN

En este art́ıculo presento una breve introducción al estudio de modelos cosmológicos que pasan de una era de
contracción acelerada a una fase de expansión, sin ser singulares.

ABSTRACT

A short introduction to the study of cosmological models that go from an era of accelerated collapse to an
expanding era without displaying a singularity is presented.

Key Words: cosmology: theory

1. INTRODUCTION

The standard cosmological model (SCM) (see for
instance Nakamura et al. 2010 for an updated re-
view) furnishes an accurate and succesful descrip-
tion of the evolution of the universe, which spans
approximately 14 billion years. The main hypoth-
esis on which the model is based are the following:

• Gravity is described by General Relativity,
• The Cosmological Principle,
• Above a certain scale, the matter content of the

model is described by a continuous distribution
of matter/energy, which is described by a per-
fect fluid.

In spite of its success, the SCM suffers from a series
of problems such as the initial singularity, the cos-
mological horizon, the flatness problem, the baryon
asymmetry, and the nature of dark matter and dark
energy2. Although inflation (which for many is cur-
rently a part of the SCM) partially or totally answers
some of these, it does not solve the crucial problem
of the initial singularity3.

The existence of an initial singularity is disturb-
ing: a singularity can be naturally considered as a
source of lawlessness4, because the spacetime de-

1Departamento de F́ısica Teórica, Instituto de F́ısica, Uni-
versidade do Estado do Rio de Janeiro, Rua São Francisco
Xavier 524, Maracanã, Rio de Janeiro, CEP 20550-900, Brazil
(sepbergliaffa@gmail.com).

2Some “open questions” may be added to this list, such as
why the Weyl tensor is null, and what the future evolution of
the universe is.

3In fact, inflation presents some problems of its own, such
as the identification of the inflaton with a definite field of some
high-energy theory, the functional form of the potential V in
terms of the inflaton, and the Transplanckian problem. See
for instance Brandenberger (2009).

4For a discussion of the singularity theorems and of the
concept of singularity see for instance Earman (1995).

scription breaks down “there”, and physical laws
presuppose spacetime. Regardless of the fact that
several scenarios have been developed to deal with
the singularity issue, the breakdown of physical laws
continues to be a conundrum after almost a hundred
years of the discovery of the FLRW solution5 (which
inevitably displays a past singularity).

The existence of an initial singularity is disturb-
ing for many other reasons6. To name just two, the
Cauchy problem is not well-formulated in spacetimes
with a singularity, and the initial singularity is in-
consistent with the entropy bound. There are also
hints that quantum gravitational effects may tame
the singularity, as a consequence of the discreteness
of the spectrum of some operators. As a consequence
of all these arguments indicating that the initial sin-
gularity may be absent in realistic descriptions of
the universe, many cosmological solutions displaying
a bounce were examined in the last decades, start-
ing from the first explicit solutions for a bouncing
geometry obtained by Novello & Salim (1979) and
Melnikov & Orlov (1979). In fact, there is a “win-
dow of opportunity” to avoid the initial singularity
in FLRW models at a classical level by one or a com-
bination of the following assumptions:

• Violating strong energy condition in the realm
of GR;

• Working with a new gravitational theory, as for
instance those that add scalar degrees of free-

5This acronym refers to the authors that presented for the
first time the solution of EE that describes a universe with
zero pressure (Friedmann) and nonzero pressure (Lemâitre),
and to those who studied its general mathematical properties
and took it to its current form (Robertson & Walker). For
historical details, see Merleau-Ponty (1965).

6See Novello & Perez Bergliaffa (2008) for a complete list,
as well as a detailed revision of nonsingular cosmological mod-
els.
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6 PEREZ BERGLIAFFA

Fig. 1. The plot of the physical distance x versus time t

illustrates the homogeneity problem: the past light cone
ℓp(t) at the time trec (in red) is much larger than the
forward light cone ℓf (t) at trec. Adapted from Branden-
berger (2004).

dom to gravity (Brans-Dicke theory being the
paradigmatic example of this type), or by adopt-
ing an action built with higher-order invariants.

Other ways to avoid the singularity are:

• Changing the way gravity couples to matter,
from minimal to non-minimal coupling;

• Using a non-perfect fluid as a source.

Finally, quantum gravitational effects also give the
chance of a bounce7. In the next section we shall
briefly discuss how a bounce can solve some of the
problems that the cosmological model pre-1980 had.

2. THE BOUNCE AND THE PROBLEMS OF
THE STANDARD COSMOLOGY

In addition to the initial singularity, SCM had
other problems. Among them we can cite the fol-
lowing (Brandenberger 1999):

• The homogeneity problem: the comoving region
over which the CMB is observed to be homoge-
neous to better than one part in 10−4 is much
larger than the comoving forward light cone at
the time of recombination (see Figure 1).

• The flatness problem: the quantity |Ω − 1| de-
creases with the evolution of a universe domi-
nated by matter or radiation. Since Ω ≈ 1 to-
day (Komatsu et al. 2011), Ω must have been
incredibly close to 1 in the past.

• The generation of primordial perturbations:
clusters of galaxies have nonrandom correlations

7See Novello & Perez Bergliaffa (2008) for details about all
these items.

Fig. 2. Typical evolution of the scale factor in a nonsin-
gular cosmological model (in green), as opposed to the
singular big bang model.

on scales larger than 50 Mpc. This scale is
comparable to the comoving horizon at teq. If
the initial density perturbations were produced
much before teq, the correlations cannot be ex-
plained by a causal mechanism8.

Except for the inital singularity, these problems
were addressed by inflation (which has problems of
its own as we mentioned before)9. We shall see next
that a model with a bounce may also face these issues
succesfully. Let us state that by a nonsingular model
with a LFRW geometry we mean a model in which
the scale factor attains a minimum value (Figure 2).

Consequently, a model with a bounce solves the
problem of the initial singularity by construction.
Regarding the homogeneity problem, the future light
cone is given by

ℓf (t) = a(t)

∫ t

ti

dt

a(t)
.

Assuming the equation of state p = ωρ it follows

that a(t) ∝ (−t)
2

3(1+ω) . Hence,

ℓf (t) ∝ (−ti)
1+3ω

3(1+ω) (−t)
2

3(1+ω) + t.

If there is a contracting phase led by a perfect fluid
with ω > −1/3, then ℓf (t) diverges for ti → ∞, thus
solving the horizon problem. The flatness problem,
is encoded in the equation

d

dt
|Ω − 1| = −2

ä

ȧ3
.

Since the standard evolution drives Ω to 1, an era
during which the evolution of the universe forces |Ω−
1| away of zero is needed. This can achieved by an

8Actually, standard cosmology cannot explain how primor-
dial density perturbations are generated.

9For a review of inflation, see for instance Bauman (2009).
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NONSINGULAR COSMOLOGICAL MODELS 7

Fig. 3. The plot shows the evolution of the Hubble radius
H
−1 and of a fixed comoving scale, the bounce taking

place at t = tB . Adapted from Brandenberger (2004).

expansion such that ä > 0 and ȧ > 0 (which is the
case of inflation), or through a long decelerated phase
of contraction before the bounce, characterized by
ä < 0 and ȧ < 0.

Regarding the generation of primordial perturba-
tions in nonsingular models, during the contracting
phase the Hubble radius H−1 contracts faster than
the physical length corresponding to a fixed comov-
ing scale k (see Figure 3). Quantum vacuum fluc-
tuations generated causally on sub-Hubble scales in
the contracting phase are assumed to be the seeds
of the inhomogeneities observed today. The scale of
these fluctuations is amplified and evolves according
to GR during the (long) time when it is larger than
the Hubble radius.

Finally, if the bounce is such that a0 ≫ ℓPl there
is no Transplanckian problem.

3. AN EXAMPLE

Having shown in the previous section that a non-
singular model may in principle furnish a solution to
the problems of standard cosmology, let us review in
this section a specific model of this type, and what
kind of predictions can be obtained from it. The

Fig. 4. The plot shows the multipoles Cℓ for a typical
bouncing model, as well as WMAP data (Falciano et al.
2008).

model in question was developed in Peter & Pinto-
Neto (2008), in the framework of GR plus a perfect
fluid with equation of state p = ωρ, the spacetime
geometry being of the FLRW type. The quantiza-
tion of both the background and the perturbations
of this model following the Bohmian approach (see
Peter & Pinto-Neto 2008 for details), furnishes for
the evolution of the background

a(τ) = a0

[

1 +

(

τ

T0

)2
]1/[3(1−ω)]

,

with dη = [a(τ)]3ω−1dτ , and η is the conformal time.
This solution has no singularities and tends to the
classical solution when τ → ±∞. An analysis of
the perturbations shows that they behave exactly as
shown in Figure 3. The result obtained in Peter &
Pinto-Neto (2008) for the power spectra is

ns = 1 +
12ω

1 + 3ω
, nT =

12ω

1 + 3ω
,

in such a way that both the scalar and the tensor
spectrum tend to a scale-invariant spectrum in the
dust limit. Finally, a fit of the amplitude of the per-
turbations to the CMB data yields a0 ≈ 1000ℓPlanck,
thus avoiding the Transplanckian problem. Notice
also that the model predicts a tensor to scalar ratio
of T/S ∝

√
ns − 1, while inflationary models tipi-

cally predict a linear relation.
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8 PEREZ BERGLIAFFA

4. BOUNCING MODELS AND OBSERVATION

As we have seen in the previous sections, nonsin-
gular models solve the problems of standard cosmol-
ogy. The example discussed in § 3 shows that some
particular models produce predictions that are not
incompatible with observations. Some other predic-
tions generic to bouncing models are:

• The spectrum of primordial perturbations dis-
plays a small oscillatory component, see Fig-
ure 4 (Falciano et al. 2008).

• Copious production of particles near the
bounce. This has been estimated in the case of
gravitons in the Pre-Big Bag model (Gasperini
& Veneziano 2003), and for photons in the
WIST theory (Salim et al. 2005, 2007).

5. CONCLUSION

Nonsingular models solve the problems of stan-
dard cosmology, and furnish predictions that may
be contrasted with observation in the near future.
There are still problems to be solved (such as the in-
fluence on the perturbations of the matter creation
at the bounce, the amount of matter created, and
the possible growth of initial perturbations), but the
bottom line is that models with a bounce are cer-
tainly worth studying, on their own sake and/or as
a complement to inflation10.

10See for instance Cai et al. (2009).

The author would like to acknowledge financial
support from UERJ, FAPERJ and CNPQ.
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