GRB 100316A: A BURST FROM A HIGH REDSHIFT GALAXY

R. Sánchez-Ramírez, J. Gorosabel, A. de Ugarte Postigo, A. J. Castro-Tirado, C. C. Thöne, J. P. U. Fynbo, A. Cabrera-Lavers, S. Guziy, M. Jelínek, J. C. Tello, V. Peris, and D. Galadí-Enríquez,

We report the first successful spectroscopic ToO executed at GTC for a GRB afterglow. These observations correspond to a GRB hosted by a Lyman-Alpha Emitter (LAE) galaxy at z=3.155.

A GRB (Gamma Ray Burst) is a brief and intense emission of very high energy photons. GRBs are followed by a long-lasting emission called afterglow. In the optical range, the flux of afterglows decay approximately as a power law $(F_{\nu} \sim t^{-\alpha};$ Sari et al. 1998) shining for hours-weeks after the gamma-ray emission. On 2010 March 16, Burst Alert Telescope (BAT) on board the Swift satellite discovered GRB 100316A at $T_0 = 02:23:00$ UT. An optical counterpart was discovered with the 1.23 m CAHA telescope 11 minutes after the GRB (Gorosabel et al. 2010) which allowed us to trigger our GTC program (GTC67-10A).

Table 1 displays our observing logs. Our observations revealed a rebrightening at $T-To\sim0.06$ days present in both light curves. Due to the large slit width, we did not detect any absortion line except the Damped Lyman- α Absortion (DLA). Fortunately, the wide slit width allowed to include an intense Ly- α emission from the GRB host galaxy. Our first results are:

1. We detected a GRB afterglow with an optical decay that is not properly described by a power-law ($\chi^2/\text{dof} = 17.9$). This could be due to some flaring activity contribution superposed to the optical power-law decay wich has an index $\alpha = 0.84 \pm 0.03$. We detect a possible flare present in both the X-ray and optical light curve.

TABLE 1

$T - T_0$ (days)	Telescope	Exposure (s)	Filter	Magnitude
0.02654	1.23 m CAHA	$3 \times 200 s$	Johnson R	20.76±0.07
0.04425	1.23 m CAHA	$3 \times 200 s$	Johnson R	21.23 ± 0.07
0.07615	1.23 m CAHA	$3 \times 200 s$	Johnson R	21.35 ± 0.08
0.09199	10.4 m GTC	$1 \times 70 s$	Sloan r'	22.43 ± 0.07
0.09977	10.4 m GTC	$3 \times 40s$	Sloan r'	22.49 ± 0.06
0.94281	10.4 m GTC	$4 \times 120 s$	Sloan g'	>24.5
0.95854	10.4 m GTC	$3 \times 90s$	Sloan r'	>23.3
0.96565	10.4 m GTC	$5 \times 60s$	Sloan i'	>23.1
0.97312	10.4 m GTC	$5 \times 60s$	Sloan z'	>23.5
2.13729	10.4 m GTC	$8 \times 80s$	Sloan i'	24.05 ± 0.07
2.14777	10.4 m GTC	$3 \times 180 s$	Sloan r'	24.12 ± 0.08
2.16652	10.4 m GTC	$3 \times 240 s$	Sloan g'	26.71 ± 0.08
2.16786	10.4 m GTC	$8 \times 90s$	Sloan z'	23.83 ± 0.09
123.07184	$10.4~\mathrm{m~GTC}$	$7 \times 300 \mathrm{s}$	Sloan r'	25.25 ± 0.04
$T - T_0$	Telescope	Exposure	Grating	Slit width
(days)		(s)		("')
0.12101	10.4 m GTC	$3 \times 900 s$	R300R	2.52
0.15942	10.4 m GTC	$2 \times 900 s$	R300B	2.52

- 2. The Ly- α column density derived from voigt profile fitting is $N_{\rm H} = 22.1 \pm 0.2 \; {\rm cm}^{-2}$. This column density value is located in the mid-high region of galaxies analysed by Fynbo et al. (2009).
- 3. We detect a host galaxy (r' = 25.25) that is a LAE. Using this emission line we derived a redshift of z = 3.155.
- 4. The Ly- α emission line is slightly off from the afterglow trace. Assuming standard cosmological parameters we estimate an impact parameter between the emission line and the trace of $d=9.0\pm2.5$ kpc.

REFERENCES

Sari, R., et al. 1998, ApJ, 497, L17Fynbo, J. P. U., et al. 2009, ApJS, 185, 526Gorosabel, J., et al. 2010, GCN Circ., 10488, 1

¹Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain (ruben@iaa.es).

²Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, Copenhagen, 2100, Denmark.

⁴Observatori Astronómic, Universidad de Valencia, Calle Catedrático José Beltrán 2, 46980 Paterna, Spain.

 $^{^3}$ Instituto de Astrofísica de Canarias, Calle Vía Láctea
s/n, 38205 La Laguna, Spain.

⁵Centro Astronómico Hispano-Alemán (CAHA A.I.E), Jesús Durbán Remón 2-2, 04004 Almería, Spain.