
II
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(T
o

rr
e

m
o

lin
o

s,
 M

a
la

g
a

, 
S
p

a
in

, 
7
-1

1
 O

c
to

b
e

r 
2
0
1
3
)

E
d

it
o

rs
: 
J.

 C
. 
Te

llo
, 
A

. 
R

iv
a

, 
D

. 
H

ir
ia

rt
 &

 A
. 
J.

 C
a

st
ro

-T
ir

a
d

o

RevMexAA (Serie de Conferencias), 45, 75–78 (2014)

NEW WEB TECHNOLOGIES FOR ASTRONOMY

P-G. Sprimont,1 D. Ricci,2 and L. Nicastro 1

RESUMEN

Gracias a las nuevas capacidades de HTML5, y las grandes mejoras del lenguaje JavaScript es posible diseñar
interfaces web muy complejas e interactivas. Además, los servidores que eran una vez monoĺıticos y orientados
a servir archivos, están evolucionando a aplicaciones de servidor fácilmente programables, capaces de lidiar
con interacciones complejas gracias a la nueva generación de navegadores. Nosotros creemos que la comunidad
de astrónomos profesionales y aficionados entera puede beneficiarse del potencial de estas nuevas tecnoloǵıas.
Nuevas interfaces web pueden ser diseñadas para proveer al usuario con herramientas mucho más intuitivas
e interactivas. Acceder a archivos de datos astronómicos, controlar y monitorear observatorios y en particu-
lar telescopios robóticos, supervisar pipelines de reducción de datos, son todas capacidades que pueden ser
implementadas en una aplicación web JavaScript. Describimos el paquete Sadira que estamos implementando
exactamente con este propósito.

ABSTRACT

Thanks to the new HTML5 capabilities and the huge improvements of the JavaScript language, it is now
possible to design very complex and interactive web user interfaces. On top of that, the once monolithic
and file-server oriented web servers are evolving into easily programmable server applications capable to cope
with the complex interactions made possible by the new generation of browsers. We believe that the whole
community of amateur and professionals astronomers can benefit from the potential of these new technologies.
New web interfaces can be designed to provide the user with a large deal of much more intuitive and interactive
tools. Accessing astronomical data archives, schedule, control and monitor observatories, and in particular
robotic telescopes, supervising data reduction pipelines, all are capabilities that can now be implemented in a
JavaScript web application. In this paper we describe the Sadira package we are implementing exactly to this
aim.

Key Words: methods: data analysis — astronomical databases: miscellaneous — astronomical databases: virtual ob-

servatory tools

1. GENERAL

Being cross-platform and easy to learn, the
HTML3 language, invented by physicists at Geneva’s
CERN in the late 1980’s4, has always been a good
choice to build simple network oriented user inter-
faces. Being used by billions of devices around the
world, the modernization of web related languages
and protocols takes a very long time to make their
way down to the final user. Today, after many years
of sedimentation and refinements, most of the new
HTML5 specifications are finally implemented in ev-
eryone’s web browser. These new powerful tools will
allow web developers to deeply reshape the WWW
we know today.

Along with the development of HTML and

1Istituto di Astrofisica Spaziale e Fisica Cosmica di
Bologna, via Piero Gobetti, 101, 40129 Bologna, Italy.

2Instituto de Astronoma, UNAM, Campus Ensenada,
22860 Ensenada, B.C., Mexico (indy@astrosen.unam.mx).

3Hyper Text Markup Language
4See http://home.web.cern.ch/topics/birth-web

HTTP5, JavaScript6, the browser-side programming
language has become a lot more powerful. At the
beginning, the JavaScript engines were slow inter-
preters, but nowdays they are much faster and effec-
tive, making use of just in time compilation7 tech-
niques like the open source V88 engine. Developed
for the chrome/chromium9 browser, it is now also
used by other independent large projects such as
Node.js10 or MongoDB11.

Sadira12 is a web browser and Node.js exper-

5HTTP, the Hypertext Transfer Protocol, http://www.w3.
org/Protocols/rfc2616/rfc2616.html

6JavaScript, http://en.wikipedia.org/wiki/JavaScript
7JIT, http://en.wikipedia.org/wiki/Just-in-time_

compilation
8V8, https://code.google.com/p/v8/
9http://en.wikipedia.org/wiki/Chromium_(web_

browser)
10Node.js, http://nodejs.org/
11MongoDB, http://www.mongodb.org/
12The Sadira experimental framework, http://sadira.

iasfbo.inaf.it/

75



II
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(T
o

rr
e

m
o

lin
o

s,
 M

a
la

g
a

, 
S
p

a
in

, 
7
-1

1
 O

c
to

b
e

r 
2
0
1
3
)

E
d

it
o

rs
: 
J.

 C
. 
Te

llo
, 
A

. 
R

iv
a

, 
D

. 
H

ir
ia

rt
 &

 A
. 
J.

 C
a

st
ro

-T
ir

a
d

o

76 SPRIMONT, RICCI & NICASTRO

SadiraNode.js application

HTTP 1.1 serverC++ V8 plugins

User web browser
Sadira widgets

Widget 1

WebSocket server GET/POST server

Widget 2

POST and GET
HTTP trafic

Database
requests

FITS toolsCamera driver

WebSocket

Sadira Binary/Text
messages

Sub widget
...

Custom client
application

Fig. 1. Overview of the main Sadira components.

imental framework used for testing new HTML
technologies, database systems and data processing
tools. Developed within the EU/FP7 funded GLO-
RIA project, http://gloria-project.eu/, it is a
tool of interest for the astronomical community at
large. Figure 1 shows its main components.

2. Sadira FRAMEWORK

The HTML DOM13 displayed in the user’s
browser is populated by a dynamically constructed
JavaScript object tree made of Sadira widgets. The
browser widgets interact with the Node.js server
handler functions through a message based protocol
built on top of the WebSocket14 or WebRTC15 API.
When widgets send messages, their “coordinates” in
the widget tree are passed to the server so that in-
coming reply messages can be routed back to them.
A Sadira web page can contain hundreds of widgets,
all able to receive custom messages from the server,
allowing for real-time updates of single objects of the
page and a fully interactive user interface.

2.1. TCP socket based data exchange

In the HTTP 1.1 specifications, requests and sub-
missions of data are sent to the server by the user’s
browser as GET and POST methods respectively.
Unfortunately, there is no way for the server to
contact the client web browser on its own, even if

13Document Object Model, http://www.w3.org/TR/

DOM-Level-2-HTML/
14https://tools.ietf.org/html/rfc6455
15WebRTC, Web Real-Time Communication, http://www.

webrtc.org/

some non-standard use of the GET method could
provide some sort of solution16. Today, thanks to
the new WebSocket protocol (built as an “exten-
sion” of HTTP 1.1), a new full-duplex TCP/IP based
socket API is available for the communication be-
tween browsers and web servers.

Most of the data exchange between the Sadira

Node.js server and the browser widgets is done
through a single WebSocket connection. The TCP
connection is established only once per browser pro-
cess, so there is no overload due to multiple TCP/IP
connection initiations, nor there is the need to trans-
fer HTTP headers. However the WebSocket API is
limited to browser-to-server connections only: there
is no “listen” function available browser-side. This
limitation can be overcome by the use of the new,
and now quite mature, WebRTC17 API, opening the
path to any kind of peer to peer (P2P) data ap-
plications between browsers without the need of an
intermediary server.

2.2. Message protocol

The WebSocket protocol is very minimalist. Data
is sent through the socket as a sequence of binary
frames constituting the fragments of the message.
There is no limitation on the message or fragment
sizes, although browsers may impose their own arbi-
trary limit. Messages can be made of a single frame.
The data payload of the messages can be either UTF-
818 character string or arbitrary binary data.

To benefit of the asynchronous capabilities of
JavaScript and to be able to handle multiplexed
data streams coming from different widgets at the
same time through a single WebSocket, the messages
need to be fragmented in reasonable size pieces. To
achieve this, both client and server JavaScript must
provide methods to construct and reassemble the
data fragments.

In order to provide the user with a simple com-
munication API, the Sadira framework defines its
own message protocol on top of the low-level one
provided by WebSocket. As mentioned, there are
two kinds of Sadira messages: UTF-8 and binary.
The UTF-8 encoded is simply an encapsulation of
the JSON19 text format. On the other hand, the
binary messages are more complex but allow for a
more powerful use. Each binary message is made of

16See, comet to the programmer, http://en.wikipedia.

org/wiki/Comet_(programming)
17http://www.webrtc.org/
18UTF-8 definition, see http://tools.ietf.org/html/

rfc3629
19ECMA-404, better known as JSON, http://www.json.

org/



II
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(T
o

rr
e

m
o

lin
o

s,
 M

a
la

g
a

, 
S
p

a
in

, 
7
-1

1
 O

c
to

b
e

r 
2
0
1
3
)

E
d

it
o

rs
: 
J.

 C
. 
Te

llo
, 
A

. 
R

iv
a

, 
D

. 
H

ir
ia

rt
 &

 A
. 
J.

 C
a

st
ro

-T
ir

a
d

o

NEW WEB TECHNOLOGIES FOR ASTRONOMY 77

a header describing the size, byte-offsets and type of
the binary payloads following the header in the mes-
sage data stream. These payloads are either BSON20

data blocks or arbitrary binary data, like files, vector
or image data bytes.

Binary data manipulation in JavaScript is not
completely standardized yet and the performance of
the code varies among the different JavaScript en-
gines. Nevertheless, transferring binary data instead
of text can make a huge difference in terms of band-
width usage efficiency and, on the client side, data
loading elapsed time. The server load is significantly
reduced too.

2.3. Node.js C++ add-ons

JavaScript is a great language to write com-
plex object oriented code, but in some situations
it lacks the performance of compiled object code.
This makes it inefficient to accomplish some types of
tasks, like executing long loops containing massive
floating point operations.

Thanks to V8, the Node.js interpreter being writ-
ten in C++, it is possible to extend the JavaScript
engine built-in functions and objects with new add-
on objects and functions written in C++, dynami-
cally linked to the Node.js interpreter when needed.
This feature solves, at least server side, the limita-
tions of JavaScript when executing computing inten-
sive tasks. We will see in the next section how we
can deal with the same problem client side, in the
browser.

The Sadira server will make use of these C++

add-ons to provide JavaScript interfaces toward in-
tensive computing tasks. In fact it allows the user
to build front-ends to existing C/C++ libraries or to
write applications that need low-level device access,
like CCD camera drivers21.

2.4. Data visualization

The complexity and amount of the available as-
tronomical data call for new, “modern” data vi-
sualization tools. Data analysis pipelines, power-
ful graphical database manager/browser and multi-
dimensional visualization tools can finally be com-
bined in a single environment we all are familiar
with: a web browser (Ricci & Nicastro 2013).

SVG22, already supported in HTML4, allows for
rich and complex vector graphics to be rendered

20BSON, binary version of JSON, see http://bsonspec.

org/
21See the Sadira node-fits and node-sbig C++ add-ons,

https://github.com/GLORIA-project/node-fits
22SVG, Scalable Vector Graphics, http://www.w3.org/

Graphics/SVG

in the browser. High level JavaScript libraries like
D3.js23 (Bostock et al. 2011) help the web devel-
oper in the creation of rich and dynamic SVG vector
graphics (Ricci et al. 2013).

HTML5 offers new possibilities for raster graphic
display with the introduction of the <canvas> tag,
allowing the programmer to access the pixel bytes
of a rectangular area, the canvas. The new HTML
specifications also introduces WebGL24, an OpenGL
ES 2.0 JavaScript interface able to render accelerated
3D graphics in a HTML <canvas>.

Although WebGL allows for compiled “shader
objects” to be fed directly into the GPU25, hence
providing accelerated graphics, the JavaScript limi-
tations make some computing tasks, like texture pix-
els or vertex computations, too slow to be usable.
The situation will change quickly with the launch of
an OpenCL26 JavaScript front-end in the browser:
WebCL27. It will allow high performance parallel
computations to take place within the browser, re-
placing slow JavaScript functions with fast object-
code whenever needed.

2.5. Databases: MongoDB and MySQL

The Sadira framework makes intensive use of
the non-relational MongoDB database system. The
BSON data storage model used by MongoDB allows
complex data structures to be created and managed
on the fly; something very difficult to achieve with
classical relational databases.

The absence of pre-defined data structures, and
hence of a static “relational data model”, is a nice
feature of NoSQL databases. However that extreme
freedom needs to be properly handled, or even re-
stricted by the programmer in order for the database
system to be usable. To answer this problem, Sadira
introduces user defined templates which describe the
expected minimal content of the MongoDB docu-
ments within a given collection. Templates are sim-
ple JSON structures containing 1. the key name,
2. type and 3. access rights of the member objects
expected to be found in a document belonging to a
given MongoDB collection.

Sadira also uses the relational database

23D3, Data-Driven Documents JavaScript library, http://
d3js.org

24WebGL, OpenGL ES 2.0 for the Web, http://www.

khronos.org/webgl/
25GPU, Graphics processing unit, http://en.wikipedia.

org/wiki/Graphics_processing_unit
26OpenCL, Open Computing Language, http://www.

khronos.org/opencl/
27WebCL, Heterogeneous parallel computing in HTML5

web browsers, http://www.khronos.org/webcl/



II
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(T
o

rr
e

m
o

lin
o

s,
 M

a
la

g
a

, 
S
p

a
in

, 
7
-1

1
 O

c
to

b
e

r 
2
0
1
3
)

E
d

it
o

rs
: 
J.

 C
. 
Te

llo
, 
A

. 
R

iv
a

, 
D

. 
H

ir
ia

rt
 &

 A
. 
J.

 C
a

st
ro

-T
ir

a
d

o

78 SPRIMONT, RICCI & NICASTRO

MySQL28, in particular when the data structure is
fixed, so that it can provide optimized and faster
queries than MongoDB.

2.6. Astronomical images database

2.6.1. FITS format based instrument data

Most of the instruments used by astronomers
store their data in the FITS file format29. FITS is
a versatile format made of a sequence of data seg-
ments called header data units (HDU). These HDUs
can be of three kinds: ASCII text buffers, binary
data-cubes or data tables; in any number and order.
Furthermore, each of these HDUs are preceeded by
an ASCII header made of a list of key/value pairs,
the metadata.

The great freedom given to the user by the FITS
specifications explains both why it is still in wide
use in the astronomical community and also why it is
impossible to handle FITS files relying solely on their
key/value information, without further knowledge of
its content. The solution we propose is again to use a
non-relational database, MongoDB in particular, to
store FITS-based instruments data and metadata30.
MySQL can still be used in parallel, as we do.

Sadira includes a Node.js C++ add-on
node-fits providing interfaces to JSON or
the JavaScript representation of the FITS data,
leaving to the higher level JavaScript the sorting
task and the MongoDB communication task.

2.6.2. MongoDB data structure

Generic Sadira “root” templates must be defined
for every category of data we need to manage. These
templates are linked to a given MongoDB collection
in a database and describe the minimum keywords
content excpected for the “documents” belonging to
that collection. This way the document structure
becomes constrained, though in a quite loosy way.

In the case of astronomical data, and CCD im-
agery in particular, we need at least two collections:
instruments and observations. These collections
need to be constrained by their respective root tem-
plates. More specialized instruments will be repre-
sented by new templates inheriting all the properties
of a root template, but extending its characteristics
with new fields. Although the various instruments
will have different fields, they can be recorded into
the same instrument collection because there is no

28MySQL database, http://www.mysql.com/
29http://fits.gsfc.nasa.gov/, Astronomical instruments

can even output more than one FITS file per exposure, for
example one for each CCD of a multi-CCD camera.

30GridFS, http://docs.mongodb.org/manual/core/gridfs

rule in MongoDB regarding the field content. How-
ever, the constraint for each instrument to own at
least the root template fields will ensure that we can
manage them all in an aggregate way.

FITS-based instruments will have to provide a
special JSON structure containing a list of keyword/-
value pairs, translating some of the FITS keywords
into (mandatory or not) database keywords. This
extra knowledge provided by the instrument defini-
tion itself will allow us to automatically and simul-
taneously handle data coming from various “known”
instruments.

A web graphical interface based on specific
Sadira widgets is beeing written to perform the
MongoDB management: the user will be able to ed-
it/create new templates, create new collections for
new instruments or experiments, and associate a
base template to them.

3. CONCLUSIONS

Computer science is in constant evolution and
mutation, and the astronomical community can
surely benefit from its new capabilities. In partic-
ular the Internet and its associated technologies are
evolving at a fast pace as they have become the heart
of modern communication systems.

In this paper we briefly described some of these
new web technologies from an astronomer’s perspec-
tive and presented the experimental Sadira frame-
work we are developing within the GLORIA project
with the aim of testing and, in the near future, pro-
viding new modern software libraries and tools to
the astronomical community.

Acknowledgements GLObal Robotic telescopes
Intelligent Array for e-Science (GLORIA) is a
project funded by the European Union Sev-
enth Framework Programme (FP7/2007-2012) under
grant agreement number 283783.

REFERENCES

Bostock, M., Ogievetsky, V., & Heer, J. 2011, IEEE
Trans., 17, 2301

Ricci, D. & Nicastro, L. 2013, in EAS Publications Se-
ries, Vol. 61, EAS Pub. Ser.(Castro-Tirado, A. J. and
Gorosabel, J. and Park, I. H.), 263

Ricci, D., Nicastro, L., & Pio, M. A. 2013, in INTED2013
Proceedings, 7th International Technology, Educa-
tion and Development Conference (IATED), 2998


