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INFORMATION AND DECISION THEORY AS APPLIED TO ASTRONOMY:

THE CASE OF ASTROMETRY AND PHOTOMETRY

R. A. Méndez1 and J. F. Silva2

RESUMEN

El ĺımite de mı́nima varianza de Cramér-Rao se utiliza para establecer una cota para la máxima precisión
astrométrica que se puede obtener con un detector CCD dadas las propiedades de la fuente, las caracteŕısticas
del detector, y las condiciones de observación.

ABSTRACT

Applying results from information and decision theory, in particular the Cramér-Rao lower variance bound, we
place limits on the maximum astrometric precision attainable by a CCD detector given the properties of the
source, the characteristics of the detector, and the observing conditions.
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1. INFORMATION AND DECISION THEORY

Given a set of independent measurements for
which we have good reasons to believe that they fol-
low an underlying physical process determined by
one (or more) parameters, a basic methodological
question is: What is the minimum variance (maxi-
mum precision) attainable in the determination of
such a parameter(s) given our data? This ques-
tion, which is of paramount importance when we
perform (or design) any experiment and, in partic-
ular, of outmost relevance in observational astron-
omy, is at the realm of a whole branch of multi-
disciplinary research that encompasses computer sci-
ence, mathematics and statistics, and electrical en-
gineering known as “Information Theory”3.

The subject of information and decision theory is
believed to have been founded by Claude E. Shan-
non, through the publication in 1948 of his seminal
paper entitled “A Mathematical Theory of Commu-
nication” (Shannon 1948), whose main focus is the
engineering problem of the transmission of informa-
tion over a noisy channel. The results of Shannon
and all the subsequent and substantial research in
the field, fueled by the interest of the telecommu-
nications community, has led to many sophisticated
estimation techniques (see, e.g., Cover and Thomas
(2006)), only a few of which have been applied to
astronomy, in particular because most of the astron-

1Department of Astronomy, Universidad de Chile, Casilla
36-D, Santiago, Chile (rmendez@u.uchile.cl).

2Department of Electrical Engineering, Universi-
dad de Chile, Av. Tupper 2007, Santiago, Chile
(josilva@ing.uchile.cl).

3See, e.g., http://en.wikipedia.org/wiki/Information_

theory

omy degree-granting institutions do not incorporate
advanced modern statistics in their curricula, nor are
these topics regularly covered in courses of observa-
tional astronomy at the under-graduate or graduate
level.

Since 2013 we have begun a collaboration be-
tween the Astronomy and Electrical Engineering de-
partments of our university, through the Informa-
tion and Decision Systems Group (see http://www.

ids.uchile.cl/), applying some of the results of
this field in astronomy, in particular in astrometry
and photometry using CCD detectors. In this poster
we give a summary of our research so far, which is
mainly based on the results presented by Méndez et
al. (2013, 2014), where full details and discussions
are presented.

2. APPLICATION TO ASTROMETRY AND
PHOTOMETRY

Our first application of the tools derived from in-
formation theory to astronomy has been in the area
of fundamental bounds to astrometry and photom-
etry, using the Cramér-Rao bound (CR hereafter).
The CR bound is an extremely important theoreti-
cal result of statistics that indicates that, given a set
of measurements that are driven by an underlying
distribution function that depends on an (a priori)
unknown parameter θ, then the variance of any unbi-
ased estimator of θ (no matter how you compute the
parameter!) will be always larger (or equal) than a
minimum (floor) value, which is called the CR bound
(a detailed derivation of the CR can be found, e.g., in
“Kendalls Advanced Theory of Statistics”, Stuart et
al. (2004)). The CR bound is built within the frame-
work of parametric statistics, and as such it requires
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specifying a model of the observations. Our model
involves the simplest case of a linear (1-dimensional)
CCD array with a deterministic part (the distribu-
tion of light consists of a PSF that characterizes the
source, plus a background from the sky and the de-
tector itself), and a stochastic part (the distribution
of intensities follows a Poisson distribution driven by
the expected flux at each pixel).

Using the above ingredients, it is possible to
show, e.g., that for a Gaussian-like PSF, when
∆x/FWHM < 1 (oversampled images, ∆x is the
detector pixel size), the maximum astrometric preci-
sion4 that one might ever get (from an unbiased esti-
mation of xc, the astrometric position of the source)
is given by (Mendez et al. 2014):

• If the detection is dominated by the flux of the
source (B/F ≪ 1):

σ
2

xc
≈

1

8 ln 2
·

1

GF
· FWHM

2
. (1)

• If the detection is dominated by the background
(F/B ≪ 1):

σ
2

xc
≈

1

4 ln 2

r

π

2 ln 2
·

B

GF 2
·

FWHM
3

∆x
. (2)

In the above equations G is the detector gain (in
e−/ADU), B is the background per pixel (in ADUs)
and F is the total flux of the source (also in ADUs).
If ∆x and FWHM are in arcsec, then σxc

will be
also in arcsec.

3. OUTLOOK

It is clear that there are many applications of
the CR bound as presented above. Just to name a
couple: (1) Observing proposal preparation/obser-
vational planning and strategy: What S/N do I re-
quire, for a given telescope + detector + observing
conditions to reach a certain astrometric precision
goal (driven by my scientific goals)?, since big obser-
vatories usually provide users with “Exposure Time
Calculators”, they might also provide “CR Calcula-
tors” (of all sorts - not just for astrometry or pho-
tometry, e.g., fringe positioning in interferometry)
to their users as a general purpose tool, and (2)
System performance monitoring: In certain applica-
tions, specially space-based, where the environmen-
tal conditions are more stable, one might monitor
the behavior of the (empirically determined!) CR
bound to determine the health of the system. For

4The same can be done for photometry, lack of space pre-
vents us from showing our results here, please see Mendez et
al. (2014).

example, the Gaia experiment regularly checks the
CR bound to determine when it is necessary to re-
focus the telescope (Mora et al. 2014), a very delicate
process that should be done only when absolutely
necessary to avoid disturbing the astrometric stabil-
ity of the satellite.

Not all in life is sweet, the CR theorem has two
basic shortcomings: It does not tell us how to con-
struct an unbiased estimator that reaches (or ap-
proaches) the CR bound, and it does not incorporate
any prior information we may have about the pa-
rameter. To overcome these deficiencies, one should
resort to a Bayesian approach using the “van Trees”
inequality (Gill and Levit 1995). The advantage of
this is that we can also define a bound, similar to
the classical CR bound, but incorporating any prior
information from the beginning. Additionally the
Bayesian approach comes with an estimator for the
parameter built-in: The “conditional expectation”,
which has theoretical guarantees to reach a mini-
mum mean square error. We are precisely working
on these topics right now, and we will probably want
to report about them in the next ADeLA meeting.
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