AN APPLICATION OF SUPERVISED LEARNING METHODS TO SEARCH FOR VARIABLE STARS IN A SELECTED FIELD OF THE VVV SURVEY

B. Rodríguez-Feliciano1, A. García-Varela1, M. F. Pérez-Ortiz1, B. E. Sabogal1, and D. Minniti2

We characterize properties of time series of variable stars in the B278 field of the VVV survey, using robust statistics. Using random forest and support vector machines classifiers we propose 47 candidates to RR Lyrææ, and 12 candidates to WU Ursææ Majoris eclipsing binaries.

Supervised learning methods have been used to search for variable stars, based on the properties of the light curves. These methods develop the process of classification using a previous classified training set. The algorithm we used, is built by choosing statistic properties of ell elements of the training sample. The supervised methods used were k-nearest neighbors, support vector machines, classification trees, and random forests.

We used near infrared data of a selected field in the Galactic Bulge, collected by the Vista Variables in the Via Lactea Survey. For the set of magnitudes in the K_s band of each star, we computed the robust statistics: median, median absolute deviation, octile skewness and tails weight. The statistics selected do not depend on a calculation of the period (obtained via Fourier analysis, analysis of variance or any other algorithm), so the learning methods are an alternative for the conventional methods. These were selected according to similar studies in our astro-statistics investigation group (Pérez-Ortiz et al. 2017).

To start we performed a usual search for different types of variable stars and propose 49 candidates for RR Lyrææ, 5 for Cepheids, 6 Algol binaries, 7 β Lyrææ binaries (see examples of light curves in Fig. 1), and 25 WU Ursææ Majoris binaries. We used these stars as training sample to developed binary classifiers for the RR Lyrææ and WU Ursææ classes. Using the most accurate supervised learning methods developed to detect variables stars (random forest and support vector machines), we propose 47 candidates to RR Lyrææ, and 12 candidates to WU Ursææ Majoris. These classifiers had an accuracy of 80 % (see Fig. 2), estimated using cross validation between partitions of the training sample reevaluated in the classifier, after being obtained via R programing language using previous developed algorithms (Kuhn et al. 2016).

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
 & Accuracy & Sensitivity & Specificity \\
\hline
Knn & 0.7444444 & 0.04000 & 1.00000 \\
Trees & 0.7761111 & 0.4400 & 0.8971 \\
Forests & 0.8097222 & 0.4400 & 0.9412 \\
SVM & 0.8094444 & 0.32000 & 0.98529 \\
\hline
\end{tabular}
\caption{Accuracy, sensitivity and specificity of the binary classifiers obtained for the W Ursææ majoris.}
\end{table}

\textbf{REFERENCES}

1Universidad de los Andes, Departamento de Física, Cra. 1 No. 18A–10, Bloque Ip, A.A. 4976, Bogotá, Colombia (bs.rodriguez128, josegarc, mf.perez648, bsabogal@uniandes.edu.co).

2Universidad Andrés Bello, Departamento de Ciencias Físicas, Av. República 220, Santiago, Chile.