POLICAN: A NEAR-INFRARED IMAGING POLARIMETER AT OAGH

R. Devaraj1, A. Luna1, L. Carrasco1, Y. D. Mayya1, and O. Serrano-Bernal1

We present a near-infrared linear imaging polarimeter POLICAN, developed for the Cananea near-infrared camera (CANICA) at the 2.1m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located at Cananea, Sonora, México. POLICAN reaches a limiting magnitude to about 16th mag with a polarimetric accuracy of about 1\% for bright sources.

POLICAN is designed for linear polarimetric observations and is fixed externally to CANICA (see Figure 1). The main elements of POLICAN are a rotating super achromatic (1–2.7 μm) half waveplate (HWP) as the modulator and a fixed wire-grid polarizer as the analyser. The HWP rotation is controlled using a stepper motor drive. CANICA has a HgCdTe detector with 1024 \times 1024 pixels. The primary broad-band near-infrared (NIR) filters are J, H, and K'. The camera re-images the incoming f/12 beam into f/6 yielding a plate scale of 0.32 arcsec/pixel, providing a field-of-view (FOV) of 5.5 \times 5.5 arcmin2. CANICA readout is structured to obtain correlated double sampled (CDS) images. Read-out noise and dark current are kept minimum at operating temperature of 77 K cooled by liquid nitrogen.

The polarimetric observations are carried out by modulating the light through different steps of HWP angles (0\textdegree, 22.5\textdegree, 45\textdegree, 67.5\textdegree). Each observation set for a particular HWP angle consists of number of dithered images distributed in a random pattern or having alternating source and off-field sky. Image reduction and analyses of POLICAN data is a two stage process carried out with a pipeline developed using IRAF and IDL software. The first stage involves measuring the instrumental polarization across the full FOV by analysing multiple observations of globular cluster $M5$. The second step involves determining the zero-phase-offset angle of the HWP for changing the polarization position angles into equatorial system. The zero-phase-offset angle for POLICAN was determined to be 139\textdegree from observations of polarimetric standards.

Polarimetric calibration was derived from the MIMIR instrument (Clemens et al. 2012b). The first step involved measuring the instrumental polarization across the full FOV by analysing multiple observations of globular cluster $M5$. The second step involved determining the zero-phase-offset angle of the HWP for changing the polarization position angles into equatorial system. The zero-phase-offset angle for POLICAN was determined to be 139\textdegree from observations of polarimetric standards.

Observations on molecular clouds were carried out and compared to results of GPIPS (Clemens et al. 2012a) data. POLICAN achieved polarimetric accuracies of 1\% having uncertainties in polarization of 0.1\% to 30\% for bright to faint sources. POLICAN will serve as a reliable and sensitive NIR polarimeter for studying magnetic fields and polarization properties in the galactic medium.

REFERENCES

Devaraj, R., Luna, A., Carrasco, L., & Mayya, Y. D. 2015, IAUSS, 175, 10

1Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, Puebla - 72840, México (dev@inaoep.mx).
2We thank CONACYT-México for the financial support under the project CB-2012-01 182841, and D.R. with CVU 555629 acknowledges the PhD grant.