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TIDAL EVOLUTION OF PLANETARY SYSTEMS

Adrián Rodŕıguez1

RESUMEN

En este trabajo revisamos la evolución orbital y rotacional de sistemas de uno y dos planetas afectados por
disipación de mareas. En el contexto de perturbación gravitacional mútua e interacción de marea entre la es-
trella central y el planeta interior, presentaremos los principales resultados para la variación de excentricidades
en ambos casos. Estos resultados fueron obtenidos através de la simulación numérica de las ecuaciones exactas
del movimiento planetário. También haremos un análisis de la rotación planetaria, la cual puede ser tempo-
rariamente capturada en configuraciones especiales como resonancias spin-órbita. Serán mostrados resultados
usando una ley de deformación viscoelastica para el planeta interno. Esta reologia es caracterizada por un
tiempo de relajación viscoso, τ , que puede ser visto como el tiempo medio caracteristico que el planeta precisa
para alcanzar una nueva figura de equilibrio luego de ser perturbado por un forzamiento externo (la marea de
la estrella)

ABSTRACT

We review the orbital and rotational evolution of single and two-planet systems under tidal dissipation. In
the framework of mutual gravitational perturbation and tidal interaction between the star and the innermost
planet, we shall present the main results for the variations of eccentricities in both cases. These results are
obtained through the numerical solution of the exact equations of motions. Moreover, we will also give an
analysis of the planetary rotation, which can be temporarily trapped in special configurations such as spin-
orbit resonances. Results will be shown using a Maxwell viscoelastic deformation law for the inner planet. This
rheology is characterized by a viscous relaxation time, τ , that can be seen as the characteristic average time
that the planet requires to achieve a new equilibrium shape after being disturbed by an external forcing (tides
of the star).

Key Words: planets and satellites

1. INTRODUCTION

The application of classical theories (e.g., Dar-
win 1880; Kaula 1964; Ferraz-Mello et al. 2008) pre-
dicts that the tidal interaction between a star and
a short-period planet leads to orbital decay and ec-
centricity damping in timescales that depends on the
physical parameters of the system. Recently, other
approaches (e.g., Ferraz-Mello 2013; Correia et al.
2014) incorporate a law of deformation which is con-
trolled by a parameter depending on the internal vis-
cosity of the deformed body (creep or viscoelastic
deformation). In this work we describe the main
results for the orbital and rotational evolution con-
sidering a viscoelastic deformation of the tidal in-
teracting planet. We consider single and two-planet
systems and apply for real extrasolar planetary sys-
tems.

1Universidade Federal do Rio de Janeiro, Observatório do
Valongo, Ladeira do Pedro Antônio 43, 20080-090, Rio de
Janeiro, Brasil (adrian@astro.ufrj.br).

2. TIDAL EVOLUTION OF SINGLE-PLANET
SYSTEMS

2.1. Equations of motion

We consider a system consisting of a central star
of mass m0 and a companion planet of mass m1.
We assume that the planet is deformed by the tidal
action of the central star in such a way that the
body responds to deformation following a Maxwell
viscoelastic rheology (Darwin 1880). The equations
of motions governing the evolutions of the planet’s
orbit and rotation are:

~̈r = −
µ1

r2
r̂ −

3µ1R
2

2r4
J2r̂ −

9µ1R
2

r4

[

C22 cos 2γ

−S22 sin 2γ
]

r̂ +
6µ1R

2

r4

[

C22 sin 2γ

+S22 cos 2γ
]

~K × r̂ (1)

and

θ̈ = −
6Gm0m1R

2

Cr3

[

C22 sin 2γ + S22 cos 2γ
]

,(2)
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where R is the radius of the planet, C its principal
inertia moment, µ1 = G(m0 +m1), r is the distance
between the planet and the star and γ = θ− f , with
θ and f are the angle of rotation (referred to a fixed
reference direction) and the true longitude, respec-
tively (the reader is referred to Correia et al. (2014)
for further details). The quantities C22, S22 and J2
are related to the instantaneous shape of the planet
figure, accounting for equatorial and polar deforma-
tions. Because the planet is not rigid and can be
deformed under the action of a perturbing potential,
the gravity field coefficients J2, C22 and S22 are not
constant but vary according to the viscoelastic defor-
mation law (see equation (17)–(19) of Correia et al.
(2014)).

A fundamental parameter appearing in the vis-
coelastic rheology is the relaxation time, τ . This
quantity can be interpreted as the time for which the
planet acquires its equilibrium figure after being de-
formed by the tidal interaction with the star. Large
and small τ values corresponds to “hard” and “soft”
planets, respectively, characterizing its degree of flu-
idity. Because τ is poorly constrained (or unknown)
even for Solar System’s bodies, we take values of τ
covering a range of several orders of magnitude.

2.2. Stationary solutions

Fig.1 illustrates the dissipation regimes resulting
from the consideration of the viscoelastic deforma-
tion law. For low frequencies (τωk << 1, where
ωk = 2Ω − kn, with k an integer, Ω = θ̇ and n
the mean orbital motion), the regime corresponds
to the usually known as “viscous” or constant time-
lag approximation, widely described in the literature
(e.g., Mignard 1979; Hut 1981). For high frequencies
(τn > 1), the dissipation regime is inversely propor-
tional to a given power of the tidal frequency, as
proposed by Efroimsky & Williams (2009). One one
hand, for low frequencies, the stationary solutions
of the planetary rotation corresponds to pseudo-
synchronous motion, for which the ratio Ω/n is larger
than unity by a quantity depending only on the or-
bital eccentricity, thus, the synchronous motion is
only attained for circular orbits. On the other hand,
for high frequencies, the stationary solutions for the
rotations are such that Ω/n = p/q, with p and q inte-
gers. These configurations are known as spin-orbits
resonances (see Fig. 4 Correia et al. (2014)).

2.3. Numerical simulations

The spin-orbit evolution is obtained through the
numerical integration of Eqs. (1) and (2), together
with the deformation law for the gravity coefficients.

Fig. 1. The quality factor Q, which 1/Q is a measure
of tidal dissipation, showing the two regimes for low and
high frequencies.

Fig. 2 shows the time variation of semi-major axis
(a), eccentricity (e), planet rotation (Ω/n) and grav-
ity coefficients (J2 and ǫ =

√

C2

22
+ S2

22
), corre-

sponding to the planet HD 80606b, which is a hot
Jupiter of 111.4 d of orbital period around a Sun-
like star, having 4.1 Jupiter masses. For all values of
τ , we note the orbital decay and circularization (top
panels). For small τ , the rotation evolves following
the stationary pseudo-synchronization, whereas for
larger values of τ , many spin-orbit resonances nat-
urally arises. These temporary trappings are desta-
bilized as the orbit becomes more circular, in agree-
ment with classical results (e.g., Goldreich & Peale
1966). For all τ , the rotation is finally captured in
the synchronous motion at the end of the simula-
tions.

Fig. 3 indicates that the instantaneous shape
of the planet oscillates around its mean equilibrium
value (see Eqs. (85)–(86) of Correia et al. (2014))
for small τ . The equatorial deformation, measured
by ǫ, follows the mean equilibrium value for a spe-
cific spin-orbit resonance (Eq. (87) in Correia et al.
(2014)) for large τ .

Fig. 4 show the evolution of the rotation for two
super-Earth planets, namely, Kepler-78 b and 55 Cnc
e, with masses of 1.7 M⊕ and 8.6 M⊕, respectively,
and very short orbital periods (see details in Cor-
reia et al. (2014)). For large τ , the relaxation time
is permanently larger than the orbital period. So,
for the considered values of τ , super-Earth are in
the high frequency tidal regime. Hence, the rota-
tion is always temporary trapped in spin-orbit reso-
nance and, as the eccentricity decays, the resonance
becomes unstable and the rotations is trapped in
the following low-order spin-orbit resonance and is
finally captured in the synchronous motion.
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TIDAL EVOLUTION OF PLANETARY SYSTEMS 21

Fig. 2. Time variation, for different values of the re-
laxation time, of orbital elements (top panels), rotation
(middle planes) and instantaneous shape (bottom pan-
els) of the planet HD 80606b.

3. TIDAL EVOLUTION OF TWO-PLANET
SYSTEMS

In this section we assume that there exist a sec-
ond companion in exterior orbit with mass m2. In
addition, we assume that only the inner planet is de-
formed due to the tides raised by the star. Adding
the corresponding mutual gravitational perturbation
between the planets, the equation of motions now are

~̈r1 = −
µ1

r3
1

~r1 +Gm2

(

~r2 − ~r1
|~r2 − ~r1|3

−
~r2
r3
2

)

+~f + ~g1 +
Gm2

µ2

~g2 , (3)

~̈r2 = −
µ2

r3
2

~r2 +Gm1

(

~r1 − ~r2
|~r1 − ~r2|3

−
~r1
r3
1

)

+~g2 +
Gm1

µ1

(

~f + ~g1

)

, (4)

where µi = G(m0 + mi) for i = 1, 2, ~ri are the as-

trocentric positions of the planets, ~f is given by Eq.
(1) and ~gi are the contributions due to the general
relativity(see Kidder 1995).

Fig. 5 shows the time variation of eccentricities
and rotation of the inner planet for several values
of τ , resulting from the numerical solution of Eqs.
(3)–(4) and applied to the system CoRoT-7. This
system is composed by an inner super-Earth planet
(m1 = 4.73M⊕) and a Neptune-like mass planet
(m2 = 13.56M⊕), both in short-period orbits (see
details in Rodŕıguez et al. (2016)).

Fig. 3. Evolution of polar (J2) and equatorial (ǫ) de-
formations as a function of the eccentricity for different
values of τ , corresponding to HD 80606b.

In panel (a), corresponding to τ = 10−3 yr, the
planet is in the low-frequency regime since n1τ < 1.
In this regime, the orbital evolution of the system
is expected to be similar to the linear tidal model,
for which the tidal dissipation is proportional to the
corresponding tidal frequency, that is, the eccentric-
ity of both orbits is rapidly damped, in agreement
with previous results (e.g., Ferraz-Mello et al. 2011;
Rodŕıguez et al. 2011). According to this model,
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Fig. 4. Evolution of the rotation as a function of eccen-
tricity for Kepler-78 b and 55 Cnc e super-Earth planets.

the rotation of the planet evolves into the pseudo-
synchronization and when e1 = 0, the synchronous
motions is attained.

In panels (b) and (c), corresponding to τ =
10−2 yr and 10−1 yr, respectively, we still observe a
rapid synchronization of the rotation with the orbital
motion, while both eccentricities are quickly damped
to zero. The only difference is that in panel (c) the
rotation becomes captured in higher order spin-orbit
resonances (Ω/n1 = 5:2, 2:1, 3:2) at the beginning of
the simulation, that are nevertheless quickly destabi-
lized until the spin reaches the synchronization. Dis-
sipation of the tidal energy only occurs in the inner
planet, but both eccentricities are damped since the
system is coupled.

In panel (d), corresponding to τ = 1yr, we ob-
serve that the rotation evolves through a succession
of temporary trappings in spin-orbit resonances (3:1,
5:2, 2:1, 3:2), ending with synchronous motion (1:1).
In this case, the rotation spends more time trapped
in higher order resonance than for τ = 10−1 yr. All
the resonances are destabilized as the eccentricity de-
cays, in agreement with previous results (Rodŕıguez

Fig. 5. Time variation of eccentricity and rotation of the
inner planet for several values of τ .

et al. 2012), because the capture and escape proba-
bility in spin-orbit resonances critically depends on
the eccentricity (e.g., Goldreich & Peale 1966).

In panels (e) and (f), corresponding to the largest
values of τ , we observe that the rotation is captured
in high order spin-orbit resonance. For τ = 10 yr,
the rotation is initially trapped in the 7:2 spin-orbit
resonance and for τ = 102 yr it is initially trapped in
the 4:1 spin-orbit resonance. As explained in (Cor-
reia et al. 2014), large τ imply that the relaxation
time is much longer than the orbital period, allow-
ing the prolateness of the planet to acquire a large
deformation value. This helps the rotation to be
captured more easily in spin-orbit resonance.

Unlike previous simulations for lower τ values,
in panels (e) and (f) we also observe that the ec-
centricity of the inner orbit is initially excited to
a high value, whereas the outer planet eccentricity
is simultaneously damped (due to the angular mo-
mentum conservation). The initial excitation of e1,
that we call “eccentricity pumping”, is somewhat un-
expected, since most studies on tidal evolution of
the orbits predict that the eccentricities can only be
damped.

4. CONCLUSION

In this paper we have studied the coupled orbital
and spin evolution of single and two-planet systems
using a Maxwell viscoelastic rheology for the inner
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planet.
In all situations, the spin evolves quickly until

it is captured in some spin-orbit resonance. It then
follows through a successive temporarily trappings in
some spin-orbit resonances, which are progressively
destabilized as the eccentricity decays. Several works
on tidal evolution usually assume synchronous mo-
tion for the rotation of the close-in companions, as
this is the natural outcome resulting from tidal inter-
actions. Nevertheless, for large values of the relax-
ation times, which is likely the case for most terres-
trial planets, we note that the rotation can remain
trapped into high-order some spin-orbit resonances
for tens of Myr.

For two-planet systems, we observed that there
are two different regimes for the orbital evolution.
For small τ values, the eccentricity of both orbits is
rapidly damped, in agreement with previous results.
However, for large τ values, the inner planet eccen-
tricity is pumped to higher values, whereas the outer
planet eccentricity is simultaneously damped due to
the orbital angular momentum conservation.
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