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BAYESIAN ESTIMATION OF UNCERTAINTIES FOR REDSHIFT

INDEPENDENT DISTANCE MEASUREMENTS IN THE NED-D CATALOG

G. Chaparro Molano1, O. A. Restrepo Gaitán1,2, J. C. Cuervo Marulanda3, and S. A. Torres Arzayus4

Obtaining individual estimates for uncertain-

ties in redshift-independent galaxy distance

measurements can be challenging, as for each

galaxy there can be many distance esti-

mates with non-gaussian distributions, some

of which may not even have a reported un-

certainty. We seek to model uncertainties us-

ing a bootstrap sampling of measurements per

galaxy per distance estimation method. We

then create a predictive bayesian model for

estimating galaxy distance uncertainties that

is better than simply using a weighted stan-

dard deviation. This can be a first step to-

ward predicting distance uncertainties for fu-

ture catalog-wide analysis.

We selected the Tully-Fisher method for estimat-
ing distances as it has the largest number of galax-
ies and samples in the NED-D redshift-independent
galaxy distance catalog (Steer 2016). In order to
obtain a distance measurement distribution we do
a bootstrap sampling drawn from different distance
modulus measurements per galaxy. From the distri-
bution resulting from the bootstrap draws we obtain
a mean distance errorDE and an uncertainty for this
error ∆ (i.e. an uncertainty for the distance error)
for each galaxy.

As a second step, we created a Bayesian model
that consistently predicts the distance error from
DE and ∆. Our predictive model will be built
around the posterior distribution for the parame-
ter estimators. We sample this distribution using
the emcee Monte Carlo Markov Chain Python pack-
age (Foreman-Mackey 2013). For galaxies with more
than 14 distance modulus measurements, we were
able to create a 6-parameter (g, o, n, f,m, b) second-
order predictive Bayesian model (Figure 1):

σBayesian = gD2
E
+o∆2+n∆DE+f∆+mDE+b. (1)

The third step is model checking. We validated
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Fig. 1. Monte Carlo Markov Chain obtained posterior
probability projections for our accepted predictive model
estimators of the parameters in Equation (1).

our model with the help of the Bayesian discrep-
ancy measure test (Gelman 1996). We draw ex-
pected values from the posterior predictive distribu-
tion and compare those to the original dataset and
a model-obtained synthetic dataset simultaneously.
Using the Freeman-Tukey statistic for this measure,
we obtained a Bayesian p-value of 0.18. Since this
value is within the range (0.025, 0.975) we can say
that the null hypothesis (the model is inconsistent
with the data) cannot be rejected (Brooks 2000).
However, for galaxies with a lower number of dis-
tance measurements or for lower-order models, the
null hypothesis is rejected.

CONCLUSION

Our model reproduces well the bootstrap-sampled
distance-error data from the NED-D catalog. How-
ever, we need to extend this model to less-sampled
galaxies and to other extragalactic distance estima-
tion methods besides Tully-Fisher.
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