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THE BAYESIAN CRAMÉR-RAO LOWER BOUND IN PHOTOMETRY

Sebastián Espinosa1, Jorge F. Silva1, Rene A. Mendez2, and Marcos Orchard1

In photometry, a topic of interest is to es-
timate the maximum precision that can be
achieved by an estimator. In this context we
analyse the bounds of precision on a CCD
detector array in a Bayesian setting, where
we have access to a prior distribution. We
use the Bayesian Cramér-Rao (BCR) lower
bound to analyse the gain in photometric per-
formance in contrast with the parametric sce-
nario where no prior information is available
(or is discarded) for the inference problem.

1. BAYES ESTIMATION

The problem of interest is the inference of the
flux of a point source as measured by a detector ar-
ray in a Bayesian scenario, which considers that the
flux F̃ is a random variable as opposed to a fixed
although unknown parameter considered in a classi-
cal parametric scenario. More precisely, given a set
of independent measurements, a basic methodologi-
cal question is: What is the minimum mean square
error (MSE) attainable in the determination of such
a random parameter given our data? This question
can be solved using fundamental limits employed in
statistics, known as the Bayesian Crámer-Rao lower
bound (BCR).

2. OBSERVATIONAL SETTING

Consider an intensity profile F̃ (x, xc) = F̃ φ(x −
xc, σ) where φ(x− xc, σ) denotes the 1-Dimensional
normalized point spread function (PSF). For simplic-
ity, we use the 1-D case, because it is simpler to deal
with, and the extension to a 2-D detector is straight-
forward. In what follows, xc and σ are assumed to
be known and fixed. In practice, F̃ φ(x−xc, σ) is not
observed directly mainly because of three sources of
uncertainty that affect all measurements. The first
is an additive background B̃ noise which captures
the photon emission of the diffuse sky and the noise
of the instrument (read-out noise and dark current).
The second is the spatial quantization process asso-
ciated with the pixel resolution (we will assume that
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the source has a Gaussian-shape profile). The third
is an intrinsic uncertainty between the nominal ob-
ject brightness plus the background and the actual
detection. Including these three effects and consid-
ering the classical parametric estimation scenario we
have a measurement vector ~I = (I1, ..., In) (photo-
electrons measured by the CCD) with n independent
random variables driven by a Poisson distribution
with expectation value given by

λi(F ) = E(Ii) = F̃ · gi(xc) + B̃i (1)

and

gi(xc) =
1√
2πσ

∫ xi+∆x/2

xi−∆x/2

e
−(x−xc)

2

2σ2 dx (2)

In this context, the Cramér-Rao inequality offers a
lower bound for the variance of the family of un-
biased estimators. More precisely, given an unbi-
ased estimator θ̂n(·) : Nn → R

+ of the parameter
θ ∈ R

+ to be estimated and a measurement vector
~I = (I1, ..., In) with n independent random variables,
then the Cramér-Rao bound states that:

Var(θ̂(I1, ..., In)) ≥
1

IF̃ (n)
, (3)

where IF̃ (n) is the Fisher’s information given by
(Mendez et al. 2013):

IF̃ (n) =
n∑

i=1




(
1

√

2πσ

∫ x+
k

x−

k

eγ(x−xc)
)2

B̃ + F̃
√

2πσ

∫ x+
k

x−

k

eγ(x−xc)


 (4)

where γ(x) ≡ 1
2 (

x
σ )

2, xi = xi−∆x
2 and x+

i = xi+
∆x
2 .

3. BAYESIAN CRAMÉR-RAO LOWER BOUND

In a Bayesian setting we assume access to a prior
knowledge (Van Trees 2004; Echeverria et al. 2016)
provided, for example, by stellar catalogues. It is
possible to show that the mean square error (MSE)
of any estimator F̂ is bounded by:

E[(F̂ − F )2] ≥

(
E

[(
∂ ln fI,F (I, F )

∂F

)2
])

−1

=
1

E(IF (n)) + I(φ)
(5)
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where I(φ) denotes the prior information, character-
ized by the probability density φF and E(IF (n)) is
the average Fisher’s information of the parametric
setting (expectation with respect to the data). It
is found that the BCR is always smaller than their
parametric equivalents or Mean Cramér-Rao lower
bound (MCR) (Perlman 1974; Weinstein & Weiss
1988).

1

E (IF (n)) + I(φ)
≤ E

(
1

IF (n)

)
. (6)

Finally, we assume for this problem of inference
an unbiased Gaussian prior distribution φF =
N(µF , σF ) where E (F ) = µF .

4. GAIN AND ESTIMATORS

We define the gain in performance for the prior
as:

gain(φ) =
E

(
1

IF (n)

)
− 1

E(IF (n))+I(φ)

E (F )
. (7)

Recalling that σm = 1.02σF

F the units for the gain
(φ) are approximately, in magnitudes. The gain rep-
resents the improvement in photometric precision of
the best estimator of the Bayes setting with respect
to the best estimator of the parametric setting. In
Figure 1 we evaluate the gain (φ) in different resolu-
tion scenarios (ultra high or survey precision) defined
as σF = α · µF , and α ∈ (0, 0.1] depending on the
precision regime of the prior. We find that the min-
imum MSE is achievable by the posterior mean and
it is in fact close to the BCR bound. Remarkably,
when α ∈ (0, 0.1] the maximum a posteriori (MAP)
decision rule is an efficient estimator that reaches the
BCR (Figure 2).
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Fig. 1. Gain with respect to MCR, B = 950 [e−].
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Fig. 2. Performance of Conditional Mean and MAP,
B = 950 [e−].

5. CONCLUSIONS

We can see that the gain from the use of prior
information is significant for low Signal-to-Noise
regime as expected, also in the high Signal-to-Noise
regime there is no appreciable gain and, hence, BCR
equals the MCR.
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