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USING OPEN SOURCE SOFTWARE AND OPEN STANDARDS FOR

OPERATING ROBOTIC TELESCOPES

T.-O. Husser1 and F. V. Hessman1

ABSTRACT

The University of Göttingen, the McDonald Observatory of the University of Texas at Austin, and the South
African Astronomical Observatory (SAAO) operate two robotic telescopes called MONET at McDonald Obser-
vatory in Fort Davis, Texas (MONET/North), and at the SAAO in Sutherland, South Africa (MONET/South).
After problems with our original observation control system and some difficulties with another one, we decided
to build our own system, initially providing only the minimally required functionality, but allowing for easy
extensibility. A decision was made to build on open standards and open source software only, so that we can
use existing and well-tested technologies. In this paper we will describe our efforts to implement such an open
observation control system using HTTP and XMPP. Furthermore, we will discuss possibilities for connecting
multiple telescopes via VOEvents and RTML.

RESUMEN

La Universidad de Göttingen, el Observatorio McDonald de la Universidad de Texas en Austin, y el Observa-
torio Astronómico Sudafricano (SAAO) operan dos telescopios robóticos llamados MONET en el McDonald
Observatory en Fort Davis, Texas (MONET/North), y en la SAAO en Sutherland, Sudáfrica (MONET/South).
Después de problemas con nuestro sistema de control de observación original y algunas dificultades con otro, de-
cidimos construir nuestro propio sistema, inicialmente proporcionando sólo la funcionalidad mı́nima requerida,
pero permitiendo una fácil extensibilidad. Se tomó la decisión de construir sobre estándares abiertos y soft-
ware de código abierto solamente, para que podamos usar tecnoloǵıas existentes y bien probadas. En este
documento describiremos nuestros esfuerzos para implementar un sistema de control de observación abierto
utilizando HTTP y XMPP. Además, discutiremos las posibilidades de conectar múltiples telescopios a través
de VOEvents y RTML.

Key Words: instrumentation: miscellaneous — methods: miscellaneous — techniques: miscellaneous — telescopes

1. INTRODUCTION

The heart of a robotic telescope system is the
Observatory Control Software (OCS) needed to op-
erate, coordinate, and optimize the use of the vari-
ous hardware and software systems. Unfortunately,
many of the systems – including the OCS – often run
on proprietary software, which makes changes or ex-
tensions to the system difficult or even impossible.

Our two robotic 1.2m MONET telescopes (Hes-
sman & Beuermann 2002) originaly used a system
that was incapable of running fully robotically and
would have been difficult to extend. Thanks to our
Potsdam colleagues, we have successfully been using
the software designed to operate the two STELLA
telescopes – telescopically almost identical twins of
MONET — on Tenerife, Spain (Strassmeier et al.
2004; Granzer et al. 2012). Forgetting various hard-
ware problems, we have encountered two long-term
problems. First, we are using only a fraction of

1Institut für Astrophysik, Universtität Göttingen, 37075

Göttingen, Germany.

what the STELLA system offers, making the task
of maintaining and extending the very complex soft-
ware designed to do different scientific tasks more
difficult. And second, where we have needed a func-
tionality that the STELLA system does not provide,
the choice of programming language (here: Java)
caused some trouble for us, both due to our lack of
experience with Java and due to Java’s lack of good
libraries for astronomy.

There are other (even free) observation control
systems out there, for instance, RTS2 (Kubánek et
al. 2004), a widely used open-source system, writ-
ten in C++. But, again, the choice of programming
language puts some restraints on the system’s ex-
tensibility due to the lack of readily available, easy-
to-use astronomy and image manipulation libraries.
Although the advantages of a language like Java and
C++ (e.g. excellent compilers, widely used, hard-
typed, fast, etc) are undeniable, both are not the first
choice for today’s astronomers. Instead, Python has
become the lingua franca in astronomical software.
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16 HUSSER & HESSMAN

Fig. 1. A simple OCS based on HTTP with two main (Telescope, Camera) and two auxiliary (ImageDB, Auto-Focus)
modules. Some possible communication between modules is indicated with arrows: the camera sends each new image
to the image database (A), an auto-focus system takes an image (B), retrieves (C) and analyses it, and then sets a
new focus at the telescope (D). Since all modules have an HTTP interface, communication with an internet browser is
straight-forward.

The simple but efficient syntax and the wide range
of available open source packages like astropy, mat-
plotlib, and pandas, makes any development fast and
efficient.

Although widely used in astronomical research,
there are some drawbacks when using Python for
implementing an OCS. Especially its limitations on
multi-threading, caused by the so-called Global In-
terpreter Lock (GIL), can cause some serious prob-
lems for systems that need to be able to respond in
real time. The solution for this comes easily in the
form of modularization: instead of having a mono-
lithic application that operates in a single process,
or splitting it up into physical components (e.g. tele-
scope, CCD, ...), we can make the modules even
smaller with each one providing only one function-
ality, e.g. for a CCD system this could be single
modules for taking images, storing them, perform-
ing auto-focus, etc.

Using modularization, the communication be-
tween the different modules, like telescope and cam-
era, becomes a major part of an OCS. Existing sys-
tems often use documented but still proprietary pro-
tocols for communication, most of them just sending
simple text strings over a TCP connection. However,
everything related to networking and internet has
evolved massively over the decade, and open stan-
dards like HTTP are used uncountable times every
single day and have proven themselves (mostly) ro-
bust and reliable. Therefore, a modern OCS should
build on as many open standards as possible – which
consequently reduces both the development time and
also the chance of failure when using existing, well
tested libraries.

After some experiments with HTTP, our com-
munication protocol of choice became XMPP (Saint-
Andre 2004), a protocol for instant messaging, used,
for instance, by Google Talk and the Facebook Mes-
senger. While this choice might seem peculiar at
first, XMPP is widely used in realtime network appli-

cations and has direct support for remote procedure
calls (RPCs) and other techniques that are useful in
machine-to-machine communication. XMPP allows
for a very modular way of building observation con-
trol systems, where, e.g., an auto-guiding system or
a new instrument can easily be plugged in as needed.
Above all, XMPP is an accepted industry standard
and has libraries available in many programming lan-
guages, including Python.

In this paper, we will motivate the use of open
source software and open standards in astronomical
software and show that this is most often the better
way than using proprietary software. We will demon-
strate how standards like HTTP and XMPP, which
were designed for a completely different purpose, can
efficiently be used for operating a robotic telescope
system. We will also describe our new OCS called
pytel that is designed to be as simple as possible,
builds on open standards only, and will eventually
be released under an open source license. Further-
more, we will discuss the possibilities of VOEvents
and RTML for telescope networking.

2. BUILDING AN OCS ON HTTP

The Hypertext Transfer Protocol (HTTP) is as
old as the internet itself, and is mainly used for serv-
ing web pages to browsers. Nevertheless, it can be
easily used as communication channel for various
types of RPC systems and also has some other fea-
tures that one can use when running an OCS.

HTTP is a text-based protocol that defines sev-
eral commands. While HTTP GET is used for re-
trieving data (e.g. a web page or an image), HTTP
POST can be used for sending data to the server.
One of the most simple implementations of RPC is
using this command together with a text-based RPC
variant like JSON-RPC2, which encodes both the re-
quest and the reply in the Javascript Object Nota-
tion (JSON, Bray 2017).

2http://www.jsonrpc.org/specification
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Fig. 2. The web interface for the camera as currently
implemented in pytel showing the CCD controls on the
left, a preview of the last image taken in the centre, and
its FITS header on the right.

As a simple example, a request like

{"jsonrpc": "2.0", "method": "subtract",

"params": [42, 23], "id": 1}

could return a reply like

{"jsonrpc": "2.0", "result": 19, "id": 1}.

The values of the params and response parame-
ters can be single values, lists of values, or even dic-
tionaries, which allows for named parameters. This
way, a telescope module might be called like this:

{"jsonrpc": "2.0", "method": "moveAltAz",

"params": {"Alt": 60, "Az": 30}, "id": 2}

Although this only works with simple datatypes
like numbers and strings, the HTTP protocol itself
can easily be used for sending and retrieving binary
data.

Using only this simple way of communication al-
ready allows for setting up a basic OCS, as shown
in Figure 1. In this example only four modules are
shown, two of which operate actual hardware (Tele-
scope, Camera). The camera module is configured
to send each new image to all modules that process
images, in this case only to an image database. Note
that the camera module itself is only responsible for
handling the CCD, it does not know about storing
images, which is done by the image database. An-
other auxiliary module in this example is an auto-
focus system. It determines the optimal focus by
taking a focus series, which requires setting a new
focus at the telescope and taking images with the
CCD. It is important to understand that in most
cases the modules in the system do not know of each
other: both the telescope and the camera module do

not care about who controls them, whether it is a
human observer or another automatic module.

Since HTTP is a widely used protocol, we can use
many of its other features for implementing an OCS.
For instance, password protection can easily be han-
dled using HTTP Basic Authentication, or any other
technique that is used a million times on websites all
over the world. Furthermore, using HTTP for com-
munication makes it easy to control the system from
outside, e.g. from a web browser or even from the
command line (e.g. with cURL). Figure 2 shows the
Angular3-based web interface for the camera module
as it is currently implemented in pytel.

However, using HTTP has some serious draw-
backs. Some of them can be circumvented using
modern web technology, usually resulting in a more
complex code. Just to name a few issues:

• HTTP only allows for one-way communication,
so a module has to continually poll (i.e. request
in a regular interval) the status of another mod-
ule, if interested in changes. There are ways for
avoiding this like Comet4 using long-held con-
nections.

• HTTP is not ideal for long-lasting function calls,
mainly due to undefined behaviour on termi-
nated connections. One way of dealing with this
is adding two-way communication as described
above, but a more simple approach is the follow-
ing: a long running RPC method immediately
returns with the estimated time for the call to
finish. The HTTP interface then either has a
method for polling the execution status, or one
for waiting for the call to finish. In both cases, a
terminated connection does not end the method
execution.

• HTTP has no built-in user identification or ses-
sion management, although there are solutions
available. This becomes important, when a
module needs to know who called a method.

• HTTP has no means of broadcasting informa-
tion. In the example of Fig. 1, the camera mod-
ule needs to know who is interested in new im-
ages, so this needs to be pre-configured.

3. USING XMPP FOR OCS COMMUNICATION

The Extensible Messaging and Presence Protocol
(XMPP)5 is a technology for real-time communica-
tion based on XML. It was invented in 1999 as a

3https://angular.io/
4https://en.wikipedia.org/wiki/Comet_(programming)
5https://xmpp.org/
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18 HUSSER & HESSMAN

Fig. 3. The same OCS as in Fig. 1, but using XMPP for communication. There now is a central server component and
an additional Proxy module that enables access to the system via HTTP, e.g. for internet browsers.

protocol for instant messaging with a client called
Jabber. Although originally designed for messaging
only, due to its simple extensibility based on so-called
XMPP Extension Protocols (XEPs), it was quickly
adapted for real-time machine communication, in-
cluding, for instance, RPC. There are implementa-
tions available in all major programming languages
– in Python we use SleekXMPP6.

All communication in an XMPP network goes
through a central server (which, e.g., can be the open
source server ejabberd7), at which all clients have
to log in with a username (here called a JabberID,
having the form of an email address) and a password,
before being able to send messages. This allows for
unique identification of all clients in the network and
also for basic security.

There are three types of messages, called XML
stanzas, that clients and server can send:

• <message/> stanzas send human readable mes-
sages and are mainly used for instant messages
(see Listing 1).

• <presence/> stanzas are the most important
types of messages in XMPP. They indicate pres-
ence (i.e. availablility or online status) for a
client (see Listing 2). These are the only kind
of messages that are broadcasted to multiple
clients at once.

• <iq/> stanzas are mostly used for machine
communication. They can contain an arbitrary
XML payload, e.g. for RPC. See Listing 3 for an
example, which also shows the extensibility of
XMPP, since the XML within the <iq/> stanza
is completely arbitrary.

Listing 1. Example for a message stanza in XMPP.

<message from=’spock@enterprise.com’

to=’kirk@enterprise.com’>

<body>

Live long and prosper.

6http://sleekxmpp.com/
7https://www.ejabberd.im/

</body>

</message>

Listing 2. Example for a presence stanza.

<presence type="unavailable" />

Listing 3. Example of an iq stanza containing an
RPC call.

<iq type=’set’

from=’checkov@enterprise.com/rpc’

to=’warpdrive@enterprise.com/rpc’

id=’rpc1’>

<query xmlns=’jabber:iq:rpc’>

<methodCall>

<methodName>warpTo</methodName>

<params>

<param>

<value>

<string>Earth</string>

</value>

</param>

</params>

</methodCall>

</query>

</iq>

The OCS as presented in Figure 1 can be con-
verted to use XMPP as shown in Figure 3. Two new
components are added: the server, which is third-
party software and is therefore maintained externaly,
and a proxy that allows HTTP access even for this
XMPP system. The proxy is completely transpar-
ent, in a sense that it just receives JSON-RPC from
the browser, translates it to XML, sends it to the
corresponding client and finally returns the result,
translated back into JSON-RPC.

There are some features in XMPP that help us
implementing the OCS from the example. When
taking an image, the camera module usually writes a
lot of header keywords into the FITS file. While most
of them are known by the camera, some must be re-
quested from other modules, e.g. the current coordi-
nates from the telescope module. In the HTTP OCS,
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Fig. 4. Shortened example of the proposed XMPP infrastructure that we intend to use for MONET with two different
telescope sites and a central one. All three XMPP servers are connected and each one hosts multiple modules. All user
interactions takes place at the central node.

the camera needs to know right from the beginning,
which other modules provide those header keywords.
In XMPP, we can use XEP-0030: Service Discov-
ery8: every client can provide a list of supported
features that all other clients can request. Now the
camera module can just send a request into the net-
work to get all the other clients that implement func-
tionality for defining FITS header keywords. This
way, an additional provider can be started after the
camera module, without explicitly letting the cam-
era module know about it. This becomes even eas-
ier with XEP-0115: Entity Capabilities9, where the
features are automatically broadcasted via <pres-
ence/> stanzas.

Another problem we had with the HTTP OCS,
was figuring out who might be interested in new im-
ages from the camera module. In XMPP we can
use XEP-0060: Publish-Subscribe (PubSub)10: one
client can create a channel, to which others can sub-
scribe. Whenever the owner sends a message into
the channel, it is automatically broadcasted to all
subscribers. So we can easily send the filename
of a new image through this channel. Again, this
becomes easier when using even another extension:
XEP-0163: Personal Eventing Protocol11, which al-
lows each client to become its own PubSub node.
Futhermore, using this extension a client can easily
define, which type of channels it is interested in, and
gets automatically subscribed, when a client, offer-
ing such a channel, appears. In pytel, we are pushing
this even further by using the PubSub mechanism for
event distribution. Using this method, a new image
is converted into a NewImage event that is broad-
casted into the network.

Using all these features, we end up with a fully
pluggable system. For instance, we are running a
module for science-frame auto-guiding, that works

8https://xmpp.org/extensions/xep-0030.html
9https://xmpp.org/extensions/xep-0115.html

10https://xmpp.org/extensions/xep-0060.html
11https://xmpp.org/extensions/xep-0163.html

on the images from the science camera. The module
subscribes to NewImage events and therefore gets
notified whenever a new image is taken. Then it
does a cross-correlation with a reference image and
moves the telescope accordingly. Note that using
Service Discovery, the telescope module can be dis-
covered automatically. All it takes to activate or
deactivate the auto-guiding now is starting or stop-
ping the module, without a need for the remaining
system to even know about it.

With all the advantages we get from using XMPP
over HTTP, there is one drawback: XMPP has no
efficient way of sending binary data. There are XEPs
for sending binary data inline as Base64-encoded
string12 – but with the sizes of astronomical im-
ages this would result in massive XML files –, or
setting up a direct SOCKS5 bytestream between the
clients13. We chose a simpler approach: by adding
another module to the network that also starts a
HTTP server, other modules can push binary data
to that server or retrieve it using a unique identifier.
Using this, the camera module can just push an im-
age to that server and retrieve an ID, which is broad-
casted using a NewImage event. Other modules re-
quest the file with the given ID from the HTTP
server and do their work.

4. OPERATING A TELESCOPE NETWORK
WITH XMPP

ForMONET, both telescope sites in South Africa
and Texas are operating independently, so that they
continue functioning even in the case of a network
outage. The web interface for creating and editing
tasks, and for downloading images, is hosted in Ger-
many. The task database is synchronized in short
intervals between there and the two sites. New im-
ages are copied automatically after they are finished.

12https://xmpp.org/extensions/xep-0047.html
13https://xmpp.org/extensions/xep-0065.html



V
 W

o
rk

sh
o

p
 o

n
 R

o
b

o
ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

, 
Sp

a
in

, 
O

c
to

b
e

r 
1
6
-2

0
, 
2
0
1
7
)

Ed
it
o

rs
: 

M
. 

D
. 

C
a

b
a

lle
ro

 G
a

rc
ía

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 A
. 
J.

 C
a

st
ro

-T
ir

a
d

o
 -

 D
O

I:
 h

tt
p

:/
/d

o
i.o

rg
/1

0
.2

2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
1
9
.5

1
.0

4

20 HUSSER & HESSMAN

Listing 4. Example XML for a VOEvent. Note that the schemaLocation has been shortened.

<VOEvent id="ivo://az.ca.saao.monet/VOEvent#123"

role="observation" version="1.0"

xsi:schemaLocation="http://www.ivoa.net/...">

<Who>

<PublisherID>ivo://az.ca.saao.monet</PublisherID>

<Date>2018-01-01T12:00:00</Date>

</Who>

<What>

<Param name="RA" ucd="pos.eq.ra" unit="deg" value="217.42895219"/>

<Param name="Dec" ucd="pos.eq.dec" unit="deg" value="-62.67948975"/>

<Param name="magnitude" ucd="phot.mag;em.opt.V" unit="mag" value="11.13"/>

</What>

<Why>

<Concept>Transit event</Concept>

</Why>

</VOEvent>

All this functionality can also be achieved using
XMPP only, which is actually designed for a multi-
server environment. In this case, the similarity to
Email is not only due to JabberIDs looking like email
adresses: a client always sends a message to its own
server, which relays it to the recipient’s server, that
finally delivers the message to its destination. In
case of MONET, we are planning to set up three
inter-connected XMPP networks: monet.saao.ac.za
in South Africa, monet.as.utexas.edu in Texas, and
finally monet.uni-goettingen.de as central site in
Germany (see Figure 4).

In this scenario, both telescope sites work in-
dependently, but can still be accessed directly via
XMPP from the central site. This would mainly
be used for distributing tasks, which can easily be
achieved by adding new modules at both sites that
implement a task database and adding RPCmethods
for creating and deleting tasks. For copying images,
a module at the central site can explicitly subscribe
to NewImage (or other) events from both sites, copy
the associated files, create entries for them in the
database, and, for instance, run a reduction pipeline.

These connected XMPP networks can also be of
use for daily maintenance. After all, XMPP pri-
marily is a protocol used for instant messaging, so
we might as well use it that way. There are XMP-
P/Jabber clients for every major operating system,
including those for smart phones and tablet comput-
ers. This allows an administrator to have a device
connected to the network in his or her pocket at all
times. By running a module at the central site that
subscribes to certain events (especially those asso-

ciated with errors in the system) and relays them
as text message to the connected administrator, an
immediate response is possible.

5. USING VOEVENTS FOR SIMPLE
INTER-TELESCOPE COMMUNICATION

This networking of telescopes works fine as long
as they are all controlled by the same organization.
For a more heterogeneous network, some more level
of authentication and access control would be nec-
essary, given that the system, as described above,
gives full control to everyone connected to the same
XMPP network. Therefore, for these cases another
approach is required, still keeping in mind the re-
quirement for only using open standards.

VOEvents (Seaman et al. 2011) have been spec-
ified by the IVOA Time Domain Interest Group in
order to have some means for publishing transient
events in real-time, with the implied request for
follow-up observations. So far they have widely been
used within the GRB community, but there are also
networks specialized on optical transients, like, for
instance, the Catalina Real-time Transient Survey
(Djorgovski et al. 2011). Libraries for handling VO-
Events are available in many programming languages
– for Python there is voevent-parse14 for creating and
parsing VOEvents, and Comet15 for sending and re-
trieving them.

Listing 4 shows an example for the XML describ-
ing a simple event, including time, coordinates, mag-
nitude, and type of event. While many more details

14https://github.com/timstaley/voevent-parse
15https://github.com/jdswinbank/Comet
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Fig. 5. Timeline for the negotation for an observation between requester and OCS using RTML.

can be specified for an event, this example already
satisfies the requirements for starting automatic ob-
servations. A telescope picking up this event can
estimate the required exposure time (if more con-
figuration is needed, maybe some kind of template
observation based on the event type can be used)
and take an image at the given coordinates. This
is easily done for fully autonomous and queue based
observatories, but there are possible solutions even
for a manual observer, e.g. some form of user inter-
face that shows incoming VOEvents.

Instead of using VOEvents for broadcasting
events, it can also be used for targeting a single tele-
scope and triggering an observation. Using this ap-
proach, requesting observations from a telescope is
simple and easy to implement. Unfortunately, this
also leads to some drawbacks, with the biggest one
being the lack of any kind of return channel, i.e. the
telescope receiving a request in the form of a VO-
Event has no way of replying, it cannot send back
the image taken, or even indicate that it is currently
not operational. However, VOEvents are the perfect
way to go, if a return channel is not required and
observations are done on a best-effort basis.

6. THE REMOTE TELESCOPE MARKUP
LANGUAGE

A possible way for the telescope to report back to
the requester can be achieved using the Remote Tele-
scope Markup Language (RTML, Hessman 2006).
Like the other techniques presented in this paper,
RTML is also based on XML. An RTML document
defines a state than gets changed by both partici-
pants (requester and requestee) over the course of
the negotiation for an observation.

As Figure 5 shows, this negotation always starts
with an inquiry, which is a first informal request (like
“Are you in principle willing to do this observation
for me?”). The requested system can either deny the
inquiry or return an offer, which, in the most sim-
ple case, is just the inquiry again. Next, the formal
request is sent, which can either again be denied or
confirmed. From now on, the requester can always
poll the system for a report. After the confirma-

tion, at some point in the future the observations
will start. The report will be answered depending
on the current state of the observation (like complete,
incomplete, failed), eventually describing a way for
receiving the requested data (e.g. simple URLs), in
case the observation has been successful.

Listing 5 shows an example for a request for an
observation using RTML. Even with only using a
small fraction of the possibilities offered by RTML,
this already allows for defining a full configuration
as required by many observation control systems: in
addition to the coordinates that we already had de-
fined in the VOEvents, we can also add binning and
filter, time constraints, and even requests for cali-
bration data.

If the requested telescope can work with this re-
quest as defined, it will return the same document,
with the mode attribute in the root element changed
to confirm, and start the observation. Polling the
telescope will eventually result in a reply with a com-
plete state, which, again, is just the same document
as in the request, but with the Observation (see List-
ing 6) and Calibration elements actually filled with
data about the finished observation.

Since RTML is transport-agnostic, it can be sent
using any means of communication – a simple solu-
tion could be using HTTP as described earlier for the
case of JSON-RPC. However, as described in Sect. 3,
XMPP already allows for an arbitrary XML payload
in its <iq/> stanzas, so one could easily use XMPP
as communication channel for RTML. For security
reasons, one would separate the internal XMPP net-
work for the OCS from the public one that accepts
RTML requests – for the latter one could even use a
publicly available network, operated by a third party.
As with VOEvents, while this will mainly be imple-
mented for robotic telescopes, a simple user interface
for human observers is easy to implement and allows
to react to observation requests.

The idea of communicating with telescopes using
RTML can be pushed even further, when adding an
organisation unit, some kind of mastermind. Imag-
ine an observatory site with multiple telescopes, in-
cluding one or more larger ones, for which obser-
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Listing 5. An example for a RTML request. Note that the schemaLocation has been shortened.

<?xml version="1.0" encoding="UTF-8"?>

<RTML mode="request" uid="rtml://de.uni-goettingen.monet/requests/12345678"

version="3.2c"

xmlns="http://www.rtml.org/v3.2c"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.rtml.org/v3.2c⊔...">

<History>

<Entry timeStamp="2018-01-01T12:00:00" />

</History>

<Project>

<Contact>

<Username>GoeObserver</Username>

</Contact>

</Project>

<Schedule>

<DateTimeConstraint>

<DateTimeStart value="2018-01-25T22:22:22"/>

<DateTimeEnd value="2018-01-25T23:23:23"/>

</DateTimeConstraint>

<Camera>

<Detector><Binning><X>2</X><Y>2</Y></Binning></Detector>

<FilterWheel><Filter name="V"/></FilterWheel>

</Camera>

<Target name="USNO⊔1234567">

<Coordinates>

<RightAscension><Value units="hours">23.45678</Value></RightAscension>

<Declination><Value units="degrees">+12.34567</Value></Declination>

</Coordinates>

</Target>

<Exposure count="1"><Value units="seconds">40.0</Value></Exposure>

<Observation/>

<Calibration>

<BiasCorrection><Count>10</Count></BiasCorrection>

<DarkCurrentCorrection>

<Count>10</Count>

<ExposureTime units="seconds">40.0</ExposureTime>

</DarkCurrentCorrection>

</Calibration>

</Schedule>

</RTML>

vation time is expensive. Therefore, for some tar-
gets additional real-time information is required, e.g.
about their current magnitude.

Combining all the techniques described above,
this scenario might look like this: a VOEvent for a

new Supernova comes in from a public event broad-
caster. Someone at the large telescope (or some auto-
matic system) wants to take a spectrum, but needs to
know first, whether it is bright enough. An observa-
tion request is sent to the observatory’s mastermind,
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Listing 6. Example of a partial complete reply in RTML from a telescope system, containing only the
information about the science data that has been taken.

<Observation>

<ImageData>

<Uri>http://monet.uni-goettingen.de/path/to/image.fits.gz</Uri>

</ImageData>

</Observation>

Fig. 6. Example for handling an observation request in a heterogenous telescope network with a mastermind.

which relays it to all smaller telescopes. An actual
observation is negotiated with one of them, and af-
ter some time a result is returned and forwarded to
the large telescope. Now the astronomer can easily
decide whether or not to observe the Supernova.

This setup is shown in Figure 6. As usual, the
negotiation begins with the inquiry step, which is
relayed to all the available telescopes in the system
by the mastermind. If none gives a positive reply, a
deny reply is sent back to the requester. Otherwise,
the mastermind picks one telescope that returned an
offer. All subsequent messages from the requester
are now relayed to this single telescope – and so are
the replies back to the requester. Therefore, the in-
telligence needed by the mastermind is limited to
selecting one single telescope, if more than one is
available.

7. CONCLUSIONS

For our MONET telescopes we are currently im-
plementing a new observation control system, writ-
ten in Python and building on open source software
and open standards only. In this paper we showed
that using existing technology for creating an OCS
works well and results in fast development and a ro-
bust system. The choice of XMPP and HTTP (for
binary data) for the communication between mod-
ules allows us to use mainly pre-existing code, which
has been well tested. Using a third-party open source
XMPP server like ejabberd frees us from maintenance
duty on such a large and complex software.

Our new OCS, called pytel, is already in oper-
ation at MONET/South, strongly coupled with the
STELLA system: telescope control, weather, roof,

and scheduling is still done using the STELLA sys-
tem, while CCD control and auxiliary modules like
auto-focus and auto-guiding are fully implemented
in pytel. Communication between both systems has
been realized using JSON-RPC over HTTP. Follow-
ing our open source directive, pytel will be released
to the public as soon as it has reached a stable state.

Furthermore, we discussed the possibilities for
connecting telescopes, especially those located at the
same observatory. We strongly believe that the fu-
ture of astronomical transient research, with its re-
quirement for fast responses, lies in automatic inter-
telescope communication. We are working on im-
plementing a test case, showing the strength of this
approach.
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