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ORBITAL UNCERTAINTY ESTIMATION SUPPORT FOR AUTONOMOUS
SPACE DEBRIS OBSERVATION

H. Jiang!, J. Liu™?, and H. W. Cheng-?

RESUMEN

El aumento continuo de los desechos espaciales ha supuesto grandes riesgos de impactos para los sistemas
espaciales existentes y los vuelos espaciales tripulados. El conocimiento exacto de los errores de propagacion de
las 6rbitas de los desechos espaciales es esencial para muchos tipos de usos, como la tarea de red de vigilancia
espacial, los andlisis de conjuncion, etc. Desafortunadamente, el error de propagacién no estd disponible para
un elemento de dos lineas (TLE). En este documento se propone un nuevo método para estimar la incertidumbre
de TLE basado en el modelo de redes neuronales. Las propiedades del objeto, el entorno espacial y el intervalo
de tiempo previsto se consideran como los datos iniciales para la red, mientras que los errores de propagacion
en la direccién descendente, normal y conormal son los resultados a obtener. Para asegurar que la orbita
elegida para el entrenamiento no es estable, solo se utilizan escombros y cuerpos de cohetes. Se demuestra
la eficiencia de la red con algunos objetos con datos TLE continuos. En general, el método demuestra ser
preciso, computacionalmente rapido y robusto, y es aplicable a cualquier objeto en el catdlogo de satélites,
especialmente para aquellos objetos recién lanzados.

ABSTRACT

The continually increased space debris have posed great impact risks to existing space systems and human space
flight. Accurate knowledge of propagation errors of space debris orbit is essential for many types of uses, such as
space surveillance network tasking, conjunction analysis etc. Unfortunately, propagation error is not available
for a two-line element (TLE). In this paper, a new TLE uncertainty estimation method based on neural network
model is proposed. Object properties, space environment and predicted time-span are considered as the input
of the network, the propagation errors in the direction of downrange, normal and conormal are as the output
of the network. In order to assure the chosen orbit for training is not stable, only debris and rocket bodies
are used. The network’s efficiency is demonstrated with some objects with continuous TLE data. Overall,
the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite
catalogue, especially for those newly launched objects.

Key Words: methods: miscellaneous — Space vehicles — techniques: miscellaneous

1. INTRODUCTION environment. Through propagation, the probability

A growing number of space activities have cre- of potential collisions and a spread of impact loca-

ated an orbital debris environment that poses in- tions and times anticipated can be calculated, these

creasing impact risks to existing space systems and efforts help significantly in managing and mitigating
human space flight (Klinkrad 2010). In order to pro- the hazards of space debris.

tect the on-orbit space system, accurate orbital ele-
ments of space debris are needed, so does the need
of associated covariance to improve the knowledge of
orbital propagation. The covariance describing the
accuracy of a space debris orbital element is an im-
portant input for many scenarios, such as conjunc-
tion analysis and re-entry predictions, which are in-
creasingly important for operating in today’s space

Two-line elements (TLEs) present the most com-
prehensive and up-to-date source of man-made space
objects and are widely used in many activities. De-
spite the importance of TLEs, they have many draw-
backs, such as, low accuracy, miss maneuvers, and
perhaps most importantly, lack of uncertainty in-
formation. The lack of uncertainty information of
TLEs has initiated numerous studies. A wide range

INational Astronomical Observatories, Chinese Academy of studies (Yim et al. 2012; Kahr et al. 2013; Geul
of Sciences, 20A Datun Road, Chaoyang District, Beijing, et al. 2017) has been conducted to derive the uncer-
P'PE'Ch.ma 100101. (jhai@nac.cas.cn). . tainty information. These approaches differ greatly

University of Chinese Academy of Sciences, No.19(A) N ; X -
Yuquan Road, Shijingshan District, Beijing, P.R.China in complexity, accuracy and applicability. Most of
100049. the existing methods relying on external data have
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many limitations, such as data are not available for
the far majority of objects. Moreover, uncertain-
ties derived for a few objects are hard to extrapolate
across the population or time due to their depen-
dency on object properties (size, shape, etc.), orbital
elements (semi-major axis, eccentricity, inclination,
etc.), variability of the environment (solar radio flux,
etc.), and the models and determination routines of
TLEs.

In this paper, a new orbital uncertainty estima-
tion method based on neural network model is pro-
posed. A multi-layer perception neural network with
two-layer of neurons is used in this work. For each
set of input data, the network provides a set of or-
bital uncertainties, which corresponds to a nonlinear
function. Since the problem under investigation is
a nonlinear process, the activation function applied
to the hidden-neuron is the hyperbolic tangent sig-
moid function. For the output layer, a linear func-
tion was considered. The inputs are object proper-
ties, orbital elements, space environment parameters
and prediction time-span. The network’s efficiency is
also validated with real TLE data. From the exper-
iments, the method proves accurate, computation-
ally fast, and robust, and is applicable to any object
in the satellite catalogue, especially for those newly
launched objects.

2. NEURAL NETWORK MODEL

An artificial neural network (NN) (Haykin 1999)
is a parallel distributed system consisting of mas-
sively interconnected simple processing units, also
referred to as artificial neurons. It is a type of nonlin-
ear model representation inspired by biological neu-
ral networks.

In the neuron model, signal z; at the input of
the synapse ¢ connected to neuron j is multiplied by
the synaptic weight wj; . This network is, therefore,
trained by an iterative adjustment of the synaptic
weights using both known input and output data.
This kind of network have the ability to learn and
generalize, that is, they are able to provide reason-
able outputs for inputs not used during the training
process. They are composed by interconnected lay-
ers of neurons, in which the output y; of a single
neuron j with m inputs is given by the nonlinear
weighted sum

y; =¢ (Z Wi + bj) (1)
i=1

where b; is the bias, x1,22, -,z are the input
signals, wji,wj2, - ,wjm are the synaptic weights
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Schematic representation of the improved NN

of neuron j; ¢ is the activation function and y; is
the output signal of neuron j.

Since the NN is composed of different layers of
neurons, the output of a single neuron, as given in
Eq. 1, is connected to the input of another neuron.
In this case, the output of a NN with a single node
in the output layer and a single hidden layer is a
nonlinear function with the following structure

Nj N
Yo(k) = o  bo + D w59, (bj + Zﬁﬂi(@)
j=1 i=1
(2)

where y,(k) is the output of the NN at instant k;
z; is the i-th input, w” indicates a weight of the
hidden layer that connects the i-th input (which is
the i-th output of the previously layer) to the j-th
neuron of the hidden layer. N; is the number of
input signals and is the number of neurons in the
hidden layer. The biases and the activation functions
are represented by b and w , respectively. Finally,
the variables indicated by an ‘o’ are related to the
output neuron (Aguirre et al. 2004). The parameters
of the proposed multi-layer NN are estimated using
the back propagation algorithm (Haykin 1999).

3. PROPOSED NETWORK AND TRAINING

An illustrative scheme of the NN model proposed
in this work is shown in Figure 1, which is an im-
proved version of that was proposed in (Jiang e al.
2018). The input layer consists of 7 artificial neu-
rons, the hidden layer consisting of 13 artificial neu-
rons and the output layer has 3 artificial neurons.
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The number of neurons in each layer is fixed.
For each set of input data (are object Size, apogee,
perigee, inclination, B-Star, solar radio flux, and
time-span, the network provides a propagation er-
rors in S, T or W direction, which corresponds to
Yo (k) described in Eq. 2. Since the problem under
investigation is a nonlinear process, the activation
function applied to the hidden neurons is the hyper-
bolic tangent sigmoid function presented in Eq. 3.

2
Pn)=—-+-1 3
() = T (3)
For the output layer, a linear function was con-
sidered.

3.1. Inputs

Since TLE propagation errors are influenced by
object size, orbital parameters, predicted time-span
and the solar activity, the input parameters of the
NN model are detailed as follows:

Object Size can be calculated with SEM model,
the RCS data of each object are selected from the
satellite situational report provided by Space-Track
website.

Orbital parameters are directly influence the
propagation errors, especially the semi-major axis,
eccentricity, inclination and B-Star. Orbital data
used in this work were obtained from space-track
website.

Prediction time-span is another important
factor that influences TLE propagation errors. In
order to account predicted time-span variability, a
series of TLE data are considered in this work.

The 10.7 ecm solar radio flux (F 10:7) is one
of the most used indexes to interpret solar activity.
Solar radio flux data used in this work were obtained
from NOAA database, available online.

3.2. Training

In order to evaluate the performance of the NN
model, the TLE data of all objects from September
1, 2019 to September 30, 2019 are investigated. For
each object, the TLE data in the first 27 days are
selected to provide training data to the NN network
and the data in the last 3 days are used to test the
network and verify its performance.

Known input and output data are required to
train the network. In training process, for a known
input vector, the NN provides an estimated output.
This output is then compared with the expected
output value, and the error for each training pat-
tern is sent back to the hidden layers by the Back-
propagation algorithm, updating the NN weights. In
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Fig. 2. Estimated STW average relative errors of ATLAS
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order to avoid overfitting or overtraining, 90% of the
training set was used to the training procedure and
10% was used to validate the model.

4. EXPERIMENTAL RESULTS

The performance of the new NN model is evalu-
ated with the average relative error, which is calcu-
lated according to Eq. 4.

¢ = Werr = Cerel 000 (4)
OE’I"T
where Ng,, is NN estimated error and C.,, is cali-
brated error.

Figure 2 shows the performance of the new model
fitted well with the prediction data within a 15-day
prediction time-span, which verified the validation of
the proposed model in the work.

5. CONCLUSION

A new orbital uncertainty estimation model is
proposed based on neural network model; experi-
ment results demonstrated the new model can pro-
vide good estimations of short-term TLE uncertainty
for space objects. It is worth mentioning that many
characterization of space debris does not considered
in the proposed NN model, more work should be
done in the future research.
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