
©c 2021: Instituto de Astronomı́a, Universidad Nacional Autónoma de México 
https://doi.org/10.22201/ia.14052059p.2021.53.14

V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

RMxAC, 53, 52–58 (2021)

LBTO TCS SOFTWARE

Petr Kubánek1

RESUMEN

Se presenta una descripción general del software de control del Observatorio del Gran Telescopio Binocular.
Resaltamos cómo el sistema es capaz de operar un robot complejo y multiejes, que resulta ser uno de los
telescopios astronómicos mayores del planeta. Se detallan las interfaces del usuario observador y del operador
del telescopio. Se concluye con los cambios ya realizados y planeados para los próximos años.

ABSTRACT

This article presents an overview of the Large Binocular Telescope Observatory’s Control Software. It is focused
on how the system is capable of driving a complex, multi-axis robot - which happens to be one of the largest
astronomical telescopes. Observer and telescope operator user interfaces are discussed. The article concludes
with changes already performed and planned for the next few years.

Key Words: telescopes

1. INTRODUCTION

The Large Binocular Telescope Observatory (Hill
et al. 2008) LBTO, is an organization operating one
of the largest optical telescopes. The telescope itself
is located at Mount Graham International Observa-
tory in southeast Arizona. The telescope’s unique
design - incorporating two borosilicate honeycomb
mirrors mounted on a single mount, three possible
focus configuration, active and adaptive optics, and
state of the art instruments - requires unique con-
trol software. The package, referred to as the LBTO
TCS (Telescope Control System), consists of vari-
ous libraries and binaries written usually in C or
C++ languages. TCS development spans over two
decades, with thousands man-hours spend on the
project. It’s hard to measure the size of the result-
ing code, but it definitely consists of a few hundred
thousand lines of code, if not a little over million.

2. LBTO

The LBTO design’s most unique features - plac-
ing two big mirrors on a single mount - present a
challenge for TCS.

The telescope optical assembly consists of three
mirrors per side - 8.4m primary (M1), 91cm sec-
ondary (M2) and 50cm tertiary (M3). Secondary
mirror comes in rigid and deformable (for Adaptive
Optics) flavors.

2.1. Focal stations

The telescope design offers three distinctive fo-
cal station per side. There is a prime focus station

1Large Binocular Telescope Observatory, University of
Arizona, 933 N Cherry Avenue, AZ 85721 Tucson, USA
(pkubanek@lbto.org).

Fig. 1. LBT beams paths to the Bent Gregorian Focal
Stations

above M1, utilizing only the primary mirror. Direct
Gregorian focus is located below M1 and needs M2
deployed. Bent Gregorian foci, located on side of the
M1, needs both M2 and M3 deployed.

2.2. Hardware interlocks

Due to the size the of observatory, staff and vis-
itor safety is an issue. A part of the telescope can
easily be moved from remote location, causing harm
to any staff or visitor performing some work on the
machine. Movement of those larger parts affecting

52



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

LBTO TELESCOPE CONTROL SYSTEM SOFTWARE 53

human safety is protected by hardware interlocks.
The commanding switches for interlocks are usually
locked out with personal locks, allowing employees
to safely disengage some of the telescope functions.
Lock state is made available to TCS. Those locks
are primary on low, hardware level, well tested with
software that doesn’t change often - achieving the
level of safety needed for telescope operation.

2.3. Active optics

LBTO uses active optics to collimate telescope
for seeing limited observations. Beam entering an
AGW (Acquisition, Guiding and Wavefront sensing)
unit located either in the instruments or before in-
struments attach to the telescope is used for both
guiding and wavefront sensing. Calculated Zernikes
showing image deformations are shiped to TCS. TCS
calculates and executes changes on steerable mirrors
(M1, M2 and M3, depending on focal station).

2.4. Sides co-pointing

Both sides can be commanded to point indepen-
dently, steering the side optical assembly. TCS has
to check if the move is physically possible. Mirror
support control allows for slight deviation of side
pointing from mount pointing. If those calculations
are disabled, excessive forces can be achieved on pri-
mary mirror support actuators. Those forces will
break the actuators, causing the primary mirror to
panic, loose collimation as it goes to rest on a spring
coil supports. This in turn will lead to about 20
minutes of downtime, as primary mirror needs to be
raised and new collimation performed.

3. TELESCOPE CONTROL SYSTEM (TCS)

TCS controls everything scientists don’t care for
- in other words, instruments are being controlled by
their respective control software, which interact with
the TCS. TCS takes care of the building, telescope
mount, active optics including wavefront and guiding
sensors, and various support subsystems - weather,
hydrostatic bearings control and ballast tanks for
telescope balancing, to name just a few.

3.1. Modular design

TCS consists of modules (or subsystems). Mod-
ules are separate programmes, running on TCS
server machines. Modules can be started and
stopped independently. A custom Remote Proce-
dure Call (RPC) mechanism is provided for the mod-
ules to perform calls to another module.

Module functions are usually slitted into multiple
threads. The modules runs in soft real-time, not nec-
essary guaranteeing response to hardware events. All
safety critical operations are performed on dedicated
hardware, which TCS only monitors and commands.

3.2. TCS Hardware

TCS is running on servers located in one of the
LBTO mountain server rooms. The machines in
the so called TCS cluster are connected to each
other through TCP/IP network. Hardware located
throughout the telescope are connected to TCS
servers through a TCP/IP network, using optical
fibers to electrically isolate the hardware nodes on
various levels of the building and telescope.

TCS servers run the Centos Linux distribution.
Data is shared on the TCS servers either through a
GlusterFS cloud file system, or as NFS mounts from
the mountain NAS.

TCS mainly communicates with subsystems con-
trolling physical movement of the mount and a PLC
controlling most of the LBTO building and auxil-
iary electronics such as building shutters and lights.
TCS also connects to DeltaTau UMACs (Universal
Motion and Automation Controller) driving various
motors on the telescope. Primary mirror collimation
is controlled through two real time VxWorks crate
and custom electronics in the mirror cell. Guiding
and wavefront sensing CCDs are controlled through
AZCam server.

3.3. Reflective memory

TCS was envisioned to take advantage of reflec-
tive memory hardware. Reflective memory allows
multiple CPUs to read and write to a common mem-
ory block. This approach seems to be quite pop-
ular in VxWorks/WindRiver systems, among oth-
ers. The original intent to use hardware card(s)
to be shared among TCS machines was changed to
instead use custom software. The software creates
IPC shared memory, watches for memory changes
recorded through a custom C++ library, and propa-
gates the changes in 1Kb UDP broadcast packets to
the other machines in the TCS cluster. Every ma-
chine in the TCS cluster must run a process handling
memory synchronization.

Reflective memory is used by TCS modules to
write important data to be read by other modules.
It’s also accessed by GUIs to read data to be dis-
played.

Reflective memory was used on multiple ma-
chines forming the TCS cluster. That includes ma-
chines running TCS modules and machines running
TCS GUIs. This approach, prone to problems with
high traffic with GUIs machines blocking time for
TCS machines updates, was reduced by running TCS
only on just two servers. Observers and users inter-
act with TCS mostly through GUIs running on TCS
servers, which are X11 forwarded to their desktops.



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

54 KUBÁNEK

3.4. Telemetry

TCS produces a plenty of telemetry streams
(Summers et al. 2016). Around 7200 data channels
are written on different timescales by TCS alone.
Streams are recorded at frequencies ranging from
1kHz to a few entries per day. Telemetry data
are used to monitor telescope performance and for
troubleshooting. Custom web interface written with
Polymer WebComponents, using Plot.ly for plotting,
is used to display the data. Various other way to ac-
cess the data are available.

The telemetry was originally stored in MySQL
database, but later changed to store in HDF5 data
files. One or if necessary multiple files are created
per day to keep HDF5 file size below 100 MB. About
10GB of data are produced every 24 hours when all
TCS subsystems are running and recording teleme-
try.

4. TELESCOPE POINTING KERNEL (TPK)

TPK is a C++ library written for telescope
pointing. It provides its users a set of classes en-
capsulating the original C pointing kernel. (Terrett
2006) describes the special binocular telescope inter-
face, which is part of TPK.

5. TCS SUBSYSTEMS

Noticeable TCS subsystems. Due to the dual na-
ture of the telescope, some of the subsystems are
doubled, one controlling the left and the other con-
trolling the right side.

5.1. Mount Control System Processing Unit
(MCSPU)

The MCSPU is the interface which sends PCS
trajectories to the mount hardware and returns hard-
ware responses. The MCSPU knows the telescope’s
position and trajectories in its axis coordinate space
- azimuth, altitude and native rotation. MCSPU
doesn’t know a target Right Ascension, Declina-
tion and differential tracking - that’s responsibility
of PCS. The MCSPU is run on a special computer
equipped with DSP I/O cards, responsible for inter-
faces to the actual mount hardware. Details can be
found in (Ashby et al. 2006).

5.2. Pointing Control System (PCS)

The PCS handles requests for pointing. It trans-
forms target sky spherical coordinates into mount’s
altitude and azimuth trajectories and ships them to
the MCSPU controlling mount motors. It queries the
MCSPU for the current encoder values and trans-
forms those back to the sky position. And it provides
function to transform sky position to focal plane po-
sition and back. PCS also handles requests for point-
ing to sidereal or non-sidereal targets.

5.3. Instrument InterFace (IIF)

The IIF coordinates communication between in-
struments and the TCS. An observer can choose a
so called authorized instrument, one per telescope
side. This instrument is then allowed to call meth-
ods which change telescope configuration (for exam-
ple pointing requests).

Instruments interface with the IIF over ZeroC
ICe (Henning et al. 2003). C++, Java and Python
language bindings are currently supported. The in-
terface provides a factory and access class. The fac-
tory allows for registration and access class creation.
The access class is then used to execute calls to the
IIF.

Requests for telescope movements can be made
either on a single side (monocular), or coordinated
for both sides as binocular commands. For binocular
commands, both sides must send the command, per-
formed only after data from both sides are received.
The TCS checks co-pointing restrictions and reject
the command if the restrictions will be violated.

5.4. Guiding Control System (GCS)

This subsystem is responsible for guiding and ac-
tive optics collimation. It is able to take a full frame
image with an AGW, find the guiding start, center
telescope on the guiding star. After guiding star is
centered, wavefront sensing can begin. Beam is fed
to Shack-Hartman wavefront sensor, acquired image
is analyzed and Zernike coefficients send to PSF for
distributions to the telescope optics.

5.5. Point Spread Function (PSF)

Zernikes calculated by GCS are transformed into
mirror displacement. Telescope operators can choose
to displace only subset of the active mirrors, as well
to introduce manual corrections, or scale the calcu-
lated Zernikes coefficients.

5.6. Primary Mirror Control (PMC)

The primary mirror is supported by pneumatic
actuators and steered by six hard points, forming a
hexapod. PMC acts only to display and command
mirror operations. Due to safety requirements, ac-
tual mirror control logic is implemented in hard real
time VxWorks/WindRiver computer and the control
electronics itself.

The system is designed to transition to a so called
panic, power less mode on any violations of safety
constrains. The constrains are checked both in elec-
tronics controlling the mirror and in the VxWork-
s/WindRiver box commanding it.



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

LBTO TELESCOPE CONTROL SYSTEM SOFTWARE 55

5.7. Remaining subystems

• LSS - Logging SubSystem, central point for
TCS events, play sounds on critical events.

• DDS - Data Directory System, compliment to
IIF.

• ENV - ENViromental subsystem, collect
weather data.

• ECS - Enclosure Control System, controls en-
closure, handles instrument alarms.

• MCS - interface to MCSPU.
• OSS - Optical Support Structure, control M2,

M3 and swing arms, handles telescope reconfigura-
tion (change of focal stations).

• AOC - Adaptive Optics Control, interface with
adaptive optics supervisor.

6. TCS FUNCTIONS

6.1. Environmental monitoring

Data from multiple weather stations are recorded
and displayed. They are used by the telescope op-
erator to decide when to open and close the shutter
doors. As the telescope is designed to by supervised
by human operators all the time, weather doesn’t
trigger telescope automatic shutdown (nor opening).

6.2. Moving telescope to a new target

Setting a new target to the telescope is essentially
a two step process:

1. Set new target. The target (together with
guiding stars) can be specified using various coordi-
nates.

2. Preset the telescope. Target polynomial
trajectories are send to MCSPU. Optimal steps are
performed depending on the preset mode.

TCS governs full telescope presetting, up to mir-
ror collimation and alignment. The following modes,
governing what will be performed, are available and
can be commanded. Each successor mode performs
previous steps plus the step described.

• Static points telescope to given location and
holds there.

• Track open loop track the target.
• Guide acquire image with AGW guider, cen-

ter guide star, start guiding.
• Active acquire images from the wavefront sen-

sor and use them to update optics collimation.
• AO starts adaptive optics.

6.2.1. Supported target coordinates

As TCS supports off-axis guiding (and wavefront
sensing), target data usually include both telescope
and guiding target. TCS supports the following tar-
get coordinates:

• Sidereal usually J2000.0 right ascension - dec-
lination pair. Star proper motion, magnitude and
color class (handy for guiding stars) can be added.

• Non-sidereal although J2000.0 pair with
rates and start date can be provided, far superior
is to use ephemeris file downloaded from the JPL
Horizons(Giorgini 2015) service. This allow for far
better, up-to-date pointing. PCS keeps care of up-
dating telescope pointing to follow non-sidereal tar-
get, synchronizing telescope movements with GCS.
Associated TCS packages provide interfaces to down-
load ephemeris from JPL Horizons.

• Azimuthal and Galactic - those are truly
rarely (if ever) used.

6.3. Offsetting telescope target

After preset is done, telescope can be commanded
to offset. Offset can be one sided (monocular) or
both sided (binocular). Binocular offsets are per-
formed only when offset is received on both sides.

During offsetting TCS has to make sure all pro-
cessed interfering with telescope pointing - guiding,
wavefront sensing and AO offloads - are paused.

6.4. Active Optics management

TCS is responsible for active optics. That re-
quires coordination among GCS, PSF, PMC, OSS
and PCS subsystems.

• GCS acquires wavefront sensing images, fit
Zernikes and send those to PSF

• PCS feeds PSF with elevation data, used for
collimation model

• PSF coordinates active optics. It allows op-
erators to modify Zernikes coefficients before us-
ing them to calculate mirror displacement. It also
calculates expected displacements from collimation
model, which are used to speed up collimation after
presetting a new target

• PMC and OSS commands and monitors mir-
ror displacement

7. USER INTERFACES

7.1. Command line interface

Various command line utilities are available.
Those were developed both for TCS testing and op-
erations, allowing operators and engineers to com-
mand the subsystems.

7.2. Engineering NCurses base mount interface

MCSPU is a separated subsystem, running
on separate computer. It provides own interface,
through which MCSPU function can be controlled.
The interface is using nCurses (nCurses 2020) to
draw control screens in a terminal.



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

56 KUBÁNEK

AzCam

GCS

Image

PSF

Zernikes

PCS

Guiding

PMC

M1
XYZ

OSS

M2+M3
XYZ

Guide
star

Elevation
Offsets

AOS

Offloads

Instrument

Pointing

Fig. 2. Active Optics interactions

7.3. Qt Graphical User Interfaces

Most of the TCS functions is controlled from Qt
GUIs. The GUIs access TCS reflective memory to
retrieve current telescope data. TCS RPCs are used
to issue commands to various hardware subsystems.

As the instruments are responsible for moving the
telescope, TCS GUI lack functions presetting and
offsetting the telescope.

8. SOFTWARE PITFALLS

Multiple software engineers and scientists collab-
orated on the design, coding, testing, deployment
and maintenance of the TCS source code. The
project progressed through classical pre-deployment,
where some time was allocated for system design and
architecture, towards classical hot-fixing of the cur-
rent problems and development of the now needed
functionality. As I joined the team at the time when
the scientists were to some degree satisfied with the
state of the software, I have had the privilege of
investigating its various dark corners and improved
them in the process.

8.1. Multi thread programming

As already mentioned, TCS programmes are us-
ing multiple threads to crunch the numbers and han-
dle various communication. Proper locking is then
needed to prevent know race conditions either while
working with shared resources or calling know thread
unsafe (system) calls. C++11 STL helps signifi-
cantly with the task, allowing for use of Resource Ac-
quisition Is Initialization (RAII ) approach for thread
lock management.

Developers using C++ Standard Template Li-
brary (STL) are usually wrongly assuming the con-
tainer manipulations are thread safe - when in fact
they usually aren’t.

Another not so well know problem comes when
cancelling a thread 2 occurs while the thread exe-
cutes in try..catch all block. As cancelling a thread
essentially throws an exception, the exception must
be re-thrown - otherwise the process will be core
dumped.

8.2. Limited understanding of system calls

System calls are tricky. Developer calling them
need to understand properly how they function, in-
teract with the running environments and what hap-
pens on possible exceptions. It’s hard to debug a
process where system call return values aren’t tested
and system call errors aren’t properly reported, par-
ticularly if under usual circumstances the code just
work.

8.3. Tendency towards developing everything from
scratch

Particularly early years of TCS developments
were plagued by designers and programmers ten-
dency to develop everything from scratch, not relying
and integrating existing components. The sentiment
can be understood given late 90s landscape, when
standard tools were either not existing or available
as closed source, binary only packages.

Of course a lot of those decisions backfired - the
most prominent example beeing spot (blobs) detec-
tion. Various algorithms were developed and tested
to detect stars for guiding and wavefront sensing, be-
fore SeXtractor (Bertin et al. 1996) was integrated
and used.

8.4. Large code blocks

Some of the code is poorly split into functions.
The code then features a long blocks, making testing,
debugging and enhancing the code difficult. Func-
tions and methods with over 1000 code lines aren’t
uncommon.

2using pthread cancel call



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

LBTO TELESCOPE CONTROL SYSTEM SOFTWARE 57

AzCam

GCS

Image

AGW UMAC

oacserver

Probe XY

PCS

Guiding

GCSGUI

Off axis
probe XY

Guide
star

PCSGUI

Fig. 3. Current GCS and its dependencies

8.5. Copy & paste programming

This is related to the previous problems. Instead
of making functions and passing arguments, the de-
velopers decided to copy & paste code, and modify
some of the parameters. This just makes code longer,
harder to read, harder to modify3.

9. CURRENT AND FUTURE DEVELOPMENTS

Here are presented a few topics I started and are
either ready to use or are reaching this point.

9.1. Code improvements

C++11 features can be now used in the code.
C++11 allows for in-situ lambda functions, improv-
ing code readability. Qt was upgraded to 4.9 release,
using system installed libraries (instead of custom Qt
installation), and plans are laid for Qt5.

9.2. Testing

Testing classes, using Catch2 (Catch2 2020) C++
header only library, are regularly created for new
development.

Test scripts, using either IIF or TCS commands,
are created for setting up telescope (either simulated
or real) into a know trouble position.

9.3. Generic command line processing class

CliApp class was created to handle need of vari-
ous command line programmes. It’s a lean, C++11,
header only class. The class uses GNU Read-
line (GNU Readline 2020) for history management.

3as if problem is detected in one block, the other similar
blocks must be changed as well

AzCam

GCS

Image

AGW UMAC

PCS

Guiding

GCSGUI

Start/pause guiding

OAC

Probe
XY

PCSGUI
Off axis

probe XY

OACGUI

Fig. 4. Proposed GCS interactions

Commands which are provided, together with their
allowed arguments and help text, are passed to Cli-
App constructor. Methods associated with com-
mands can then be called either from command line
or from an interactive console.

9.4. New GCS subsystem

GCS subsystem is most likely the worst of all
TCS modules - features really long functions blocks4

and mix together both simulated and on sky opera-
tions.

Current GCS controls AGW stages through a
process called oacserver. Sun V RPCs (Sun Mi-
crosystems 1988) are used for commanding the
oacserver. That makes direct communication with
stages motion control hardware difficult. Adding
new features to oacserver is difficult due to its legacy
C only design.

New architecture replaces oacserver with a TCS
module called OAC. This will communicate directly
with motion stages. As the same motion stages are
used for active optics control, OAC will benefit in
usign the proven code.

The following steps are ready to be use:

• class for FITS handling
• class for communication with guiding and

wavefront sensing CCDs
• class for communication with AGW stages

42k lines of code aren’t uncommon



V
I 

W
o

rk
sh

o
p

 o
n

 R
o

b
o

ti
c

 A
u

to
n

o
m

o
u

s 
O

b
se

rv
a

to
ri

e
s 

(M
a

za
g

ó
n

, 
H

u
e

lv
a

 (
Sp

a
in

),
 S

e
p

te
m

b
e

r 
3
0
 -

 O
c

to
b

e
r 

4
, 
2
0
1
9
)

Ed
it
o

rs
: 

A
. 

J.
 C

a
st

ro
-T

ir
a

d
o

, 
S.

 B
. 
P

a
n

d
e

y
, 
&

 M
. 
D

. 
C

a
b

a
lle

ro
-G

a
rc

ía
 -

 D
O

I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2
2
0
1
/i

a
.1

4
0
5
2
0
5
9
p

.2
0
2
1
.5

3
.1

4

58 KUBÁNEK

• command line interface for CCDs and AGW
stages, verifying design of the former

• simulator (written in Python), simulating
CCD control programme

• TCP control and readout for One Line Filesys-
tem interface, used by legacy AGW housekeeping
units, mimicking new housekeeping units interface

• SeXtractor (Bertin et al. 1996) - C++ interface
class

The next steps are needed to reimplement GCS:

• class for displaying FITS file in QtWidget, to-
gether with scaling functions

• guiding algorithm
• wavefront sensing image analysis - where an

external script is preferred to C/C++ code logic
• new OAC and GCS modules
• new OACGUI and GCSGUI

10. CONCLUSION

This presents the LBTO TCS. As the observatory
transits from an engineering phase, where its various

aspects were designed, deployed, (redesigned and re-
deployed) towards full scientific operations, the re-
sults shall contribute to breakthrough discoveries.

REFERENCES

Ashby, D. S., McKenna, D., Brynnel, J. G., et al. 2006,
SPIE, 6274, 23

Bertin, E. & Arnouts, A&A117, 393-404
Cath2, available on https://github.com/catchorg/

Catch2

Giorgini, J. D. 2015, in IAU General Assembly, volume
22, 225293, https://ssd.jpl.nasa.gov

GNU readline library, available on https://tiswww.

case.edu/php/chet/readline/rltop.html

Henning, M. & Spruiell, M. 2003 in ZeroC Inc. Revision
Hill, J. M., Green, R. F., Slagle, J. H., et al. 2008, SPIE,

7012, 03
nCurses, available on https://www.gnu.org/software/

ncurses

Summers, K. R., Summers, D. M, Biddick, C., & Hooper,
S. 2016 in Proc. SPIE 9913, Software and Cyberin-
frastructure for Astronomy IV

Sun Microsystems, RFC1050, available on https://

tools.ietf.org/html/rfc1050

Terrett, D. L. 2006, SPIE, 6274


