VII Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

Revista Mexicana de Astronomia y Astrofisica Serie de Conferencias (RMzAC), 59, 209-215 (2025)
(© 2025: Instituto de Astronomia, Universidad Nacional Auténoma de México
https://doi.org/10.22201/ia.14052059p.2025.59.34

SOFTWARE COMPONENTS OF THE INTELLIGENT OBSERVATORY

C. H. D. van Gend!, S. B. Potter"?, N. Erasmus', S. Chandra', M. Hlakola!, H. Worters', and R. Julie?

RESUMEN

El Observatorio Inteligente (OI) es un proyecto del Observatorio Astronémico de Sudéfrica (SAAO) para
optimizar la flexibilidad y eficacia de los telescopios e instrumentos en el lugar de observacion. Destacamos dos
aspectos del proyecto OI: la actualizacién del software de control y la supervision de instrumentos y telescopios,
y permitir programar y ejecutar observaciones de forma dindmica.

En cuanto al primer aspecto, analizamos la arquitectura del software que hemos desarrollado para conectar
los instrumentos y telescopios, asi como su compatibilidad con las aplicaciones de la red telescopios y como esto
soporta interfaces remotas y automatizadas con ellos. A partir de esta arquitectura, hemos desarrollado una
Unidad de Control Local (UCL) para cada telescopio, responsable de la seguridad del mismo, interfaces web
para cada instrumento y telescopio para permitir el control directo y la supervisién de los mismos, asi como
un componente de secuencia de comandos (scripting) que permite la operacién automatizada.

Para la programacién de solicitudes de observacién utilizamos el componente denominado Adaptive Sched-
uler del Observatory Control System (OCS), desarrollado por el Observatorio Las Cumbres. Esto permite que
los observadores envien solicitudes de observacién y produce un cronograma de observaciones que puede cambiar
dindmicamente durante la noche.

El sistema de secuencia de comandos sirve de unién entre el programador, por un lado, y los instrumentos y
el telescopio, por el otro. Un sondeador de horarios consulta periédicamente a la UCL para obtener permiso para
observar y, si se le otorga, recupera la programacion mas reciente del programador OCS y pasa los elementos de
programacion individuales a un ejecutor de secuencias de comandos. El ejecutor de la secuencia de comandos
configura los instrumentos y el telescopio de acuerdo con la solicitud de observacién y a continuacién, ejecuta
las observaciones. Una vez completadas o fallidas, el estado se devuelve al OCS para que el programa pueda
actualizarse.

ABSTRACT

The Intelligent Observatory (IO) is a project of the South African Astronomical Observatory (SAAO) to
optimise the flexibility and efficiency of the telescopes and instruments at the observing site. We highlight two
aspects of the IO project: updating the control and monitoring software for instruments and telescopes, and
allowing observations to be scheduled and executed dynamically.

For the first, we discuss the architecture of the software we have developed to connect instruments and
telescopes, and how this supports remote and automated interfaces to these. Using this architecture, we have
developed a Local Control Unit (LCU) for each telescope responsible for the safety of that telescope, web
interfaces for each instrument and telescope to allow direct control and monitoring of these, and a scripting
component which allows automated operation.

For the scheduling of observation requests, we use the Adaptive Scheduler component of the Observatory
Control System (OCS), developed by the Las Cumbres Observatory. This allows observation requests to be
submitted by observers, and produces a schedule for observations which may change dynamically in the night.

The scripting system provides the glue between the scheduler on the one hand and the instruments and
telescope on the other. A schedule poller regularly queries the LCU for permission to observe, and if this is
given, retrieves the latest schedule from the OCS scheduler and passes the individual schedule items to a script
runner. The script runner configures the instruments and telescope according to the observation request, then
executes the observations. On completion or failure the status is returned to the OCS so that the schedule may
be updated.

Key Words: Robotic observatory — Autonomous observing — Software architecture — Intelligent Observatory

1South African Astronomical Observatory, 1 Observa- 2Department of Physics, University of Johannesburg,
tory Rd, Observatory, Cape Town 7925, South Africa Auckland Park, Johannesburg, 2006 South Africa.
(c.vangend@saao.nrf.ac.za). 3South African Radio Astronomy Observatory, 2 Fir

Street, Observatory, Cape Town 7925, South Africa.
209



VII Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

210 VAN GEND ET AL.

1. INTRODUCTION

The South African Astronomical Observatory
(SAAO) operates a diverse range of telescopes at
its observing station near the town of Sutherland,
in South Africa’s arid Karoo region. These include
the 10-metre class Southern African Large Telescope
(SALT), the newly acquired 1.0-metre Lesedi tele-
scope (Worters et al (2016)), as well as the two older
1.9- and 1.0-metre telescopes (the latter two commis-
sioned in 1948 and 1964 respectively). Additionally
the SAAO shares ownership or has access to observ-
ing time on several other telescopes on the observing
plateau. The telescopes are equipped with a range of
instruments, including high speed cameras, low and
medium resolution spectrographs, and polarimeters.

The older telescopes and instruments each had
their own specific control software, interfaces, data
pipelines and operating procedures, and there was
no common approach to interacting with these. As
we developed control software for and interfaces to
newer telescopes and instruments, we wanted to fol-
low a more uniform approach and adopt common
standards for development of control and access soft-
ware. We also wanted to apply these to the older
telescopes and instruments.

In addition, the requirements of observers and
the observatory have changed over the years. It is
no longer the best use of telescope time to grant a
full week or more to an observer who then travels to
the Sutherland observatory and spends each night
(weather permitting) at the the allocated telescope.
A target might only be visible for part of the evening,
or an observer might equally well prefer to observe
a given target over several months. With new tele-
scopes such as the Legacy Survey of Space and Time
(LSST) and the Square Kilometre Array (SKA) we
expect many new targets meriting follow-up observa-
tions to be discovered each night, and we would like
our systems and procedures to have the flexibility
and capability of taking advantage of these.

The Intelligent Observatory (I0) project of the
South African Astronomical Observatory was set up
to address these issues (Viisénen et al. 2018; Potter
2021). The IO is an effort to systematically modern-
ize and improve the efficiency of the SAAQ’s tele-
scopes and instruments. It envisages a central con-
trol system (CCS) which has oversight of all tele-
scopes and their associated instruments, and is able
to send observation requests to each telescope, and
receive status updates from these.

The project requires changes to hardware, soft-
ware and procedures. Among the hardware updates
are those allowing remote control and instrument

selection by software alone. The software updates
include changes to allow safe programmatic oper-
ability, following a uniform approach. This has al-
lowed us to build a system to receive and execute
remote observation requests, and a scheduler which
can produce a dynamic queue of observations to be
performed.

The IO is a project with many aspects, and in this
paper we will concentrate here on control software,
software providing auxiliary functions, and software
required for autonomous operations.

2. SOFTWARE ARCHITECTURE

A fundamental need for the IO project is that
instruments and telescopes be safely operable both
remotely and autonomously.

To enable this, we need a software system which
allows diverse hardware components and software
services to communicate with one another. These
should be accessible to other software which can re-
ceive observation requests and translate these into a
set of operations which result in these requests being
executed.

In the absence of human control, we need to en-
sure system safety. An independent system able to
monitor weather should be able to take control of the
telescope and issue a shutdown command, regardless
of other applications which might be preparing for
or taking observations. This implies that multiple
applications should be able to access the hardware
simultaneously.

The system should be modular and extensible,
allowing new components to be added without re-
quiring significant code changes in existing systems,
and it should also be possible for application-level
software to be developed without extensive knowl-
edge of the lower-level software.

To accommodate these requirements we have
chosen a modular, layered, and distributed archi-
tecture (Richards (2022)). In this context, modular
means that the software consists of independently
developed units which can be plugged together into
larger aggregations. A layered architecture is one
in which communication from hardware to control
passes through a number of layers, each additional
layer adding different functionality. Layers typically
only communicate directly with the adjacent lay-
ers above and below. A distributed architecture,
in this context, is one in which an entity can be
built from several independent hardware components
which don’t necessarily need to be on the same host.

Figure 1 illustrates such an architecture.

The instruments and telescopes typically com-
prise several components. The required functionality



VIl Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

SOFTWARE COMPONENTS OF THE IO 211

Inter-facility communication

k 4

Telescope Server

¥ ¥
Server 1 Server 2
Driver 1 Driver 2

TelescopeDriver

Fig. 1. A layered, distributed modular architecture.

of each hardware component is provided by a driver,
embedded in server software allowing network access
to these capabilities. A corresponding client for each
component is able to access these capabilities. The
client can be embedded in any software which re-
quires access to the hardware item.

An integration and utility layer instantiates each
of the clients representing the hardware components
of the system. This layer also provides functions
which depend on multiple components - for example,
setting up an instrument to use frame transfer mode
might require configuration of both a detector and a
shutter.

Above the integration and utility layer, an inter-
facility communication layer allows communication
between facilities like telescopes and instruments. So
for example if an instrument needs current pointing
information from the telescope to populate FITS file
headers, it could make a call to a get_fits_info()
function in the telescope’s integration and utility
layer, via the top-level controller.

Finally, user or machine interfaces to the instru-
ment can be built above the interfacility communica-
tion layer. Examples of these will be discussed later.

3. IMPLEMENTATION OF COMPONENTS

The architecture depicted above describes the
pattern used for the interaction between hardware

components and higher-level software, and the way
in which we may assemble more complex software
from more basic building blocks. When implement-
ing the design, we need to make some concrete deci-
sions.

A benefit of a distributed architecture is that the
various components can be written in whichever pro-
gramming language is most suitable for the task at
hand. For hardware items like detectors, the driver
software needs to be able to read data rapidly, and
for these we use C++. Everywhere else, we have
built our stack in Python.

For the client-server interaction, it would cer-
tainly be possible to develop the client and server
code using low-level TCP/IP. However, there exist
several packages which allow remote procedure calls
(RPCs) and inter-process communication (IPC).
We chose to use Apache Thrift? because it is a
lightweight framework that makes such RPC/IPC
easy. Thrift allows an interface consisting of func-
tions and data structures to be specified in an in-
tuitive interface definition language as shown in fig-
ure 2. The Thrift package includes a compiler which
takes this interface definition and outputs server and
client stub code in the languages of choice. In this
case, the stub code consists of a set of empty function
calls for each function defined in the interface, and

4nttps://thrift.apache.org/



VII Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

212 VAN GEND ET AL.

the work to be done is mostly filling these in with
working code. Thrift provides middleware modules
(for Python) and libraries (for C++) which do the
work of serializing and transporting function calls
and data between client and server. Developers im-
plementing clients and servers do not need to concern
themselves with the details of the middleware code.
Calls made on the client side are executed on the
server side, and the results returned to the client.

Building the software components of the IO, fol-
lowing the architecture we have chosen, is a three-
stage process: creating interfaces to hardware com-
ponents, combining and extending individual hard-
ware interfaces to form instrument or telescope in-
terfaces, and finally, developing the end components.

The first stage, creating interfaces to each hard-
ware item, means deciding which hardware function-
ality to make available, creating a Thrift interface
definition reflecting this, compiling this to generate
the stub code, and fleshing out the code to create
working drivers. The drivers are wrapped in server
code (also using a Thrift template) and then become
stand-alone processes, listening for connections from
their corresponding clients.

The second stage is to develop the integration
and utility layer modules for the instruments or tele-
scope. These modules include the client code for
each associated hardware item but also functions
which apply to more than one hardware item, and
functions which contain business logic which is not
specific to any particular hardware item. The func-
tions of the integration and utility module, includ-
ing those of the clients the module includes, form
an application programming interface (API) to the
particular instrument or telescope they describe.

As discussed in the architecture description, we
use an interfacility communication layer above the
integration and utility layer to allow telescopes, in-
struments and weather services to communicate with
one another. This enables utility functions in the
integration and utility layer to use more than one
facility. Which of these get included is configured at
run time by the software application.

The third and final stage is the development of
these specific applications, using the interfaces to the
various instrument, telescope and weather services.

It is important to note that there is a single in-
stance of each hardware component server running
at any time. The higher layers are software which
provide access to the hardware, and multiple appli-
cations using these layers may be built, and may run
simultaneously.

The applications we have built include:

Command line tools to view and operate instru-
ments and telescopes (used mostly for testing)

Web interfaces for instruments and telescopes
(providing a more user-friendly interface)

Monitoring and safety tools

Autonomous agents

We use the git (Chacon (2014)) version control
system during development and deployment, with
code stored in a central repository. Code to be de-
ployed is tagged, and the tagged version is checked
out onto the target machine. C++ code is compiled
and installed using a Makefile. Where Python code
is used, each subsystem has a dedicated Python vir-
tual environment, and deployment entails installing
the code into that environment. The Python setup-
tools package is used for overall controll of the build
and deployment system.

Extensive logging is performed during runtime
as an aid to monitoring, debugging and analysis of
software and hardware. We also check for excep-
tional behaviour in code (operations timing out, sys-
tem calls failing, etc) and propagate these excep-
tions upwards to where they can be best handled.
A feature of Apache Thrift is that exceptions may
be propagated across the interface; this enables ex-
ceptions arising in a driver process to be caught and
displayed in a user interface. When this occurs a
message can be displayed in the user interface and
users may take corrective action before continuing
with observations.

4. UTILITY FUNCTIONS

As part of the 10 project, we have developed var-
ious functions which make life easier for astronomers
observing manually, and which are necessary when
observing in autonomous mode.

An example of this is an autofocus function. Pre-
viously, finding the best focus position required iter-
ating through a list of focus positions using the tele-
scope control, taking an image with the currently se-
lected instrument at each position, and finally select-
ing the focus position which gave the best-focussed
image.

If the temperature changes enough, if a filter is
changed, or of course if a different instrument is se-
lected, the best focus position needs to be deter-
mined again.

Since the software now allows instruments to
communicate with and send commands to the tele-
scope, we have been able to produce an autofocus()
function in the instrument service. This iterates



VII Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

SOFTWARE COMPONENTS OF THE IO 213

service CameraService

void set_readout_speed(l: ReadoutSpeed speed) throws (1: CameraException e);

void set_exposure_length(1l: i32 exposure_length) throws (1: CameraException e);

{
void set_binning(l: i8 xbin, 2: i8 ybin) throws (1: CameraException e);
void set_gain(l: Gain gain_number) throws (1: CameraException e);
void start_expose() throws (1: CameraException e);
void abort_exposure() throws (1: CameraException e);
CameraState get_state() throws (1: CameraException e);
}

Fig. 2. An example of a basic Thrift interface definition

through the range of focus positions, obtaining an
image at each. A source extraction is performed
on each image, the full width at half maximum
(FWHM) is then obtained for each source, and the
average of these calculated. After iterating through
the range a quadratic is fitted to the plot of mean
FWHM vs focus position, and the best focus position
is that which minimizes the focus measure.

For a given instrument and filter, the focus po-
sition depends linearly on the ambient temperature.
Over time, using the autofocus function at a range of
temperatures, we are able to acquire enough data to
determine the parameters of this linear fit. This en-
ables us to set the correct focus immediately, given
the measured ambient temperature, the filter and
the instrument.

A further utility function which relieves manual
observers of some tedium but which is necessary for
autonomous observations, is moving the telescope so
that the light from the target falls on a specific pixel.
This is particularly important in spectroscopy, where
the light from the target must fall on the slit.

Our Mookodi instrument is both an imager and
spectrograph (Erasmus et al. submitted). The spec-
trograph design is such that the beam is not deflected
by the spectrograph optics grism and slit). These
may be moved out of the beam, so that the CCD is
directly illuminated.

The slit has a narrow and a wide section, the lat-
ter used when the seeing is high. The column of pix-
els corresponding to the slit position is known, and
we have chosen two "magic pixels” corresponding to
points under the narrow or wide slit sections. Point-
ing the telescope such that the target falls on either
of these guarantees that when the spectrograph op-
tical elements are placed in the beam, the light from
the target will pass through the slit.

To achieve this, a drop_star_on_slit () function
in the instrument service is used. This ensures that

the optical elements are moved out of the beam. then
makes a best effort to point the telescope in the right
direction. Thereafter an image is obtained and the
sources extracted. This list of sources is then sent to
a WCS service - we use astrometry.net (Lang et al
(2010)) - which returns the actual coordinates of the
image centre. Comparing these with the coordinates
of the best effort pointing, and knowing the offset of
the magic pixel, we can calculate the direction and
distance to nudge the telescope so that the light from
the target falls directly on the magic pixel.

Again this is possible because the instrument and
telescope can communicate with one another.

5. AUTONOMOUS OPERATIONS

Finally, our goal has been to prepare instruments
and telescopes for autonomous observing. We have
the building blocks in place, in the sense that we
have interfaces to each of the instruments and the
telescope, and we can do all of the tasks of pointing,
focusing, acquiring a target, and taking exposures.

The general health and functioning of the IO
ecosystem is made visible through a web-based dash-
board, which shows the status of each service on each
telescope. An alerting system sends text messages or
emails to relevant parties in the event of critical pro-
cesses failing. A “pre-flight” test is run in the late
afternoon, ensuring that all relevant subsystems are
functional, and the results mailed to the overseers of
the 10.

Telescope and instrument safety is a primary con-
cern when the telescope is operating autonomously.
To address this we have a Local Control Unit (LCU)
(van Gend et al (2022)) which monitors external con-
ditions, and shuts the telescope down if required.

For the scheduling of observation requests, we use
the Adaptive Scheduler component of the Observa-
tory Control System (OCS) (Nation et al (2022)),



VII Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

214 VAN GEND ET AL.

developed by the Las Cumbres Observatory®. This
allows observation requests to be submitted by ob-
servers, and produces a schedule for observations
which may change dynamically in the night

As observations are marked as completed, they
are removed from the queue, while those marked as
having failed may be rescheduled. The queue may
be adjusted as new observation requests are added.
Each observation request in the queue contains de-
tails about the telescope pointing, instrument config-
uration and observation requirements, and the time
at which the observation is to be started.

We have developed a service which polls the
scheduler, retrieving the queue at regular intervals
(we use intervals of 1 minute). The queue is then
examined to determine when the next observation
is scheduled. If a previously scheduled observation
is already running, the polling software does noth-
ing and sleeps until the next interval elapses. If no
observation is due in the next 20 minutes, and the
telescope is open, a command is sent to shut down
the telescope. If the next observation is due within
the next 10 minutes, a command is sent to open the
telescope. Finally, if the time for the next observa-
tion has been reached, the observation request is sent
to the software which oversees its execution.

The first step in executing the observation is to
translate the XML-format observation request, as
sent by the OCS scheduler, to a form that our soft-
ware (instrument and telescope) can act on. We pro-
duce two JSON format scripts: a setup script for the
pointing of the telescope and target acquisition, and
an execution script with the details of each observa-
tion to be made at the given telescope setup.

The telescope setup script contains the target
right ascension and declination, the required track-
ing type (sidereal, non-sidereal or none) and for non-
sidereal tracking, the parameters for this. For non-
sidereal tracking, we currently support MPC® orbital
elements to specify this, but we plan to extend this
support to use JPL” orbital elements too (the latter
is already supported by the OCS. If the telescope
pointing needs to be finely adjusted (e.g. to put a
star on a given pixel, as is required for spectroscopy,
the details required for that are included.

The setup script is passed to a run_script()
function, which passes the telescope and instrument
specific parts of the script to the stage_script()
functions in the telescope and instrument. These
functions move the telescope or configure the instru-

Shttps://observatorycontrolsystem.github.io/
Shttps://www.minorplanetcenter.net/
"https://ssd.jpl.nasa.gov/orbits.html

ment as required, but do not start any observations.
When these functions have returned, the telescope is
in position to begin observing .

The second script contains details of the expo-
sures to be taken at that telescope position, includ-
ing exposure time, number of observations, binning,
gains, and filters. This script is passed to the in-
strument’s stage_script() and after this a call is
made to the instrument’s start_exposure() func-
tion. There may be multiple such sets of exposures
specified, in each case they are executed in succes-
sion.

At the beginning of each observation attempt,
the OCS is notified and the observation is marked as
attempted. After the observation is completed, the
OCS is again notified and the observation is marked
as complete. If instead the observation is unable to
be completed, the OCS is notified and the observa-
tion is marked as failed, and possibly rescheduled.

6. CONCLUSIONS

We have developed a simple and flexible software
architecture which we have applied to our systems,
enabling remote and robotic operations

Various utility functions have been developed to
replace formerly tedious and time consuming steps.

We have successfully applied this to the Lesedi
telescope and the Mookodi instrument.

The telescope runs in queue scheduled mode,
fully autonomously:

e The LCU enforces safe operation
e Biases are taken in the late afternoon
e Flats are taken immediately after sunset

e Items in the schedule queue are executed at the
prescribed time

e We are able to observe sidereal and non-sidereal
objects

We are currently commissioning Sibonise, a wide
field imager on the same telescope, and will incor-
porate it into our autonomous observing plan when
commissioning is finished.

We will then roll out fully autonomous observing
to our 74-inch telescope, using the instrument selec-
tor currently being commissioned. Observations will
use SHOC, a high speed camera, and SpUPNic, a
medium resolution spectrograph. Following that we
will turn our attention to the 40-inch telescope, and
then to other telescopes.

Lastly, we have developed systems which listen
for alerts of events meriting follow-up observations,



VIl Workshop on Robotic Autonomous Observatories (October 16-20, 2023)
Editors: Maria Gritsevich, Alberto J. Castro-Tirado, Petr Kubdnek, Shashi B. Pandey, and David Hiriart - DOI: hitps://doi.org/10.22201/ia.14052059p.2025.59.34

SOFTWARE COMPONENTS OF THE IO 215

and when these are received the observation requests
are added to the queue. We will be expanding these,
and intend to be ready to react to alerts issued by
the LSST when it comes online later in 2024.

REFERENCES

Chacon, S., Straub, B. 2014, Pro git, Apress

Erasmus, N., Steele, I. A., Piascik, A. S., et al. submitted

Lang, D., Hogg, D. W., Mierle, K., Blanton, M., &
Roweis, S. 2010, AJ, 139, 1782

Nation, J., Bowman, M., Daily, M., et al. Proc. SPIE,
12186, 121860Q

Potter, S. B. 2021, Anais da Academia Brasileira de Cin-
cias, 93, SciELO Brasil

Richards, M., 2022, Software Architecture Patterns,
O’Reilly Media Inc.

Vaisanen, P., Crause, L., Gilbank, D., et al. Proc. SPIE,
10704, 107040A

van Gend, C. H. D., Potter, S. B., Julie, R., et al. Proc.
SPIE, 12189, 121890R

Worters, H. L., O’Connor, J. E., Carter, D. B., et al.
Proc. SPIE, 9908, 99083Y



