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https://doi.org/10.22201/ia.14052059p.2025.59.14

OBSERVATORY CONTROL SYSTEM AT SOUTH AFRICAN
ASTRONOMICAL OBSERVATORY

S. Chandra1,2,3, S. B. Potter1, C. G. Gend1, N. Erasmus1, and R. Julie1,4

RESUMEN

El programa de Observatorio Inteligente (IO) del Observatorio Astronómico de Sudáfrica (SAAO) tiene como
objetivo operar la mayoŕıa de sus telescopios de forma robótica y desde un sistema de control centralizado
equipado con tecnoloǵıas modernas para coordinar las observaciones de seguimiento de alertas proporcionadas
por otros telescopios y observatorios tales como LSST, ROMAN, zTF, CTA, etc. Con los recientes desarrollos
en el SAAO, el sistema de control del observatorio (OCS) ha demostrado ser un subsistema ya integrado de
la compleja arquitectura del IO. El OCS, considerando sus distintos componentes: telescopios, instrumentos,
observaciones como tal, registros, etc., facilitó a la arquitectura IO el poder integrar de manera única telescopios
e instrumentos más antiguos, originalmente no diseñados para operaciones automatizadas. Al utilizar lenguajes
populares como Python como componente principal, también resulta fácil cambiar según sean los requerimientos
e igualmente el poder comunicarse mediante robots. También se ha reducido gran parte de la carga del equipo
de gestión del observatorio al proporcionar una base de datos con un protocolo de comunicación fácil para la
gestión y visualización de los datos.

ABSTRACT

The intelligent observatory (IO) programme at SAAO aims to operate most of its hosted telescopes robotically
from a centralized control system equipped with modern technologies to coordinate the followup observations
triggered by the most sophisticated global facilities like LSST, ROMAN, zTF, CTA etc. With the recent
developments at SAAO, the observatory control system (OCS) has proven to be an integrated sub-component
of the complex IO architecture. The OCS, because of a simplistic fragmentation in terms of the definitions
of the various components: such as telescopes, instruments, observations, logging; helped the IO architecture
uniquely to integrate very old telescope and instruments, originally not designed for the automated operations.
Using popular languages like Python as a major component, it also become easy to change as per need and
also to communicate using robots. It has also reduced a lot of burden of the observatory management team by
providing a communicable database for managements and data visualization

Key Words: IO Architecture — Observatory: Observatory Control System

1. GENERAL

In the current era of the multi-messenger astron-
omy the coordinated multi-wavelength campaigns
have become an effective tool for a wide range of
astronomical research. Being either variable stars in
our galaxy, outbursts in galactic compact objects,
active galaxies, or distant gamma-ray bursts, etc.,
wherever variability is a crucial characteristic, the
coordinated monitoring provides only ways to un-

1South African Astronomical Observatory (SAAO), 1 Ob-
servatory Road, Observatory, Cape Town, 7925, South Africa
(sunil.chandra355@gmail.com).

2Centre for Space Research, North-West University,
Potchefstroom Campus, 11 Hoffman St., Potchefstroom, 2520,
North-West, South Africa (chandra@saao.ac.za).

3Physical Research Laboratory, Mt. Abu Observatory,
Mount Abu, Rajasthan, 507501, India (schandra@prl.res.in).

4South African Radio Astronomy Observatory, 2 Fir
Street, Cape Town, 7925, South Africa.

cover a complete picture of the system and underly-
ing physical processes. Depending on the astrophys-
ical systems the campaigns may become very time
critical and to involve real-time coordination be-
tween various international observing facilities from
ground and the space. A well structured campaign
with real-time feedback system has served backbone
for reporting ice-breaking discoveries such as kilono-
vae as the optical counterparts to some gravitational
wave events (Abbott et al. 2017), and the first elec-
tromagnetic (EM) counterparts of neutrino sources
(IceCube Collaboration et al. 2018; Andreoni et al.
2024). The coordinated campaigns have historically
helped many traditional research fields to uncover
deep hidden details of the physical processes (Plucin-
sky et al. 2017; Yao et al. 2021; EHT MWL Science
Working Group et al. 2021). The upcoming mega
facility Vela Rubin Observatory or LSST (Ivezić et
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al. 2019) shall be streaming millions of triggers ev-
ery night with many new exotic unknown breeds of
astrophysics systems.

For example, characterizing and classifying op-
tical transients or electromagnetic counterparts of
neutrinos and gravitational waves, variable nature
of broad-band emitters pose a huge challenge of cov-
ering entire accessible energy spectrum with best
possible simultaneity. These coverage may need
many repetitions in similar of different orders based
on the requirements of the scientific objectives and
telescope times. Such complex observing plans not
only demand rapid actions but also a nearly real-
time communications between different participat-
ing facilities or collaborations. Intelligent observa-
tory (IO) programme5(Potter 2021) is an effort to
upgrade the existing observing facilities at SAAO
in Sutherland to robotize and convert the South
African plateau as a rapid followup machine in the
LSST era. The IO’s flexible architecture (van Gend
et al. 2020) has provisions of switchable robotic and
manual modes of telescopes operations. This also
enables a centralized computer brain for communi-
cating with the observer (or robots) and multiple
observing facilities. The IO architecture can be split
between three major components 1) The Local
Control Unit (LCU): set of modules to communi-
cate with telescope control, instrument control and
auxiliary services attached to the instrument (guider,
focusser etc), 2) IO Observatory Control Sys-
tem (IO OCS or OCS): modules to enable Ap-
plication Programming Interface (API) driven
communications between observer and the observa-
tory, and 3) The IO Interfacing Layer (IOIL):
set of modules converting the instructions from the
OCS to the frameworks of individual telescopes-
instruments pairs. The LCUs are very different for
the instrument and telescopes combinations. The
IO team has developed layers (e.g., thrift or python
wrapper) to communicate original control software
(cameras, filter-wheels, telescope drives, dome drives
etc) and avoid re-development from scratch, where-
ever possible (Erasmus, N., et. al., 2024). The IOIL
are mostly Python libraries developed in-house to es-
tablish a general format communication, preferably
by converting the incoming instructions in the JSON
format (e.g., schedule poller at SAAO) to small
scripts with settings forwarded to the LCUs. The
OCS as per the design, is very important component
of the IO architecture (refer to Figure 1) because this
aims to provide easy, descriptive and robotic two-
way communications, support multi-platform access

5https://io.saa.ac.za
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Fig. 1. The high-level design of the Intelligent Observa-
tory Architecture. The IO OCS or OCS serves as the
central server which communicates the users/admin and
local control units (LCUs). The communication with the
LCUs are mediated through IO interfacing layer. The
green box around Lesedi telescope indicates that it is
already operated in a robotic mode.

(API controlled), and easy to be integrated with
other systems and layers. This manages various
databases and serves as the brain of the IO system
at SAAO.

2. OBSERVATORY CONTROL SYSTEM (OCS)
AT SAAO

The OCS at SAAO (henceforth referred as OCS,
mentioned otherwise) primarily consists of the mod-
ules developed by the Las Cumbres Observatory
(LCO), with the same name6, enabling the network-
ing of 25 telescopes of the LCO network in the dif-
ferent geographical locations. A subset of publicly
available modules with a minimal optimization and
added layering for the networking using Python, in
close collaborations with the development team at

6https://observatorycontrolsystem.github.io
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LCO, serves as the brain of the OCS. Having a gen-
eralized structure, vast ranges of the basic function-
alities, robotic communications for the admin and
user related activities, network based communica-
tions for almost internal and external activities, the
OCS is very easy to add more intelligent layers to the
IO structure in-near future such as weather based de-
cision making, analysis pipelines, and artificial intel-
ligence (AI) driven characterization, cataloging and
alerts etc. The adoption of the LCO’s modules are
integrated in such a way that the future upgrades of
these can be easily used without any major change
of other communicating layers. These justifies the
use of the local production of the LCO’s modules a
best suited publicly available resource to serve the
vision of IO at SAAO.

2.1. Modules adopted from the LCO’s OCS

The recent versions of the following modules
make the complete OCS being used for the IO:

• configdb:7 This is Django, HTML and Python
based module to create, maintain and commu-
nicate the database related to the site, tele-
scope, instruments, detectors, and optical com-
ponents. The module, because of defining
the sub-components of the instruments at a
very fundamental level of information (with
additional controls in the form of validation
schema), is capable of creating a complex
and shared telescope-instrument combinations.
The database used by this is freely available
(PostgreSql and hence adds to its applicability
for the general use. The configdb database (see
Figure 2 for different sub-components and the
flow-chart) stores information in a multi-layered
JSON format which is easily callable for the API
requests through GET instances. Figures 3 and
4 refer to the snapshots of various instances in
the JSON format. The customization of the
this database to apply the local requirements of
the SAAO telescopes and instruments are done
through using generic modes, optical path ele-
ments, and specific custom validation schema.
We also had defined several specific ‘tags’ while
defining the ‘instrument’ and ‘instrument type’
to apply many complex settings and availing
those to the users. These tags are interpreted
by IIL in a comprehensive and machine readable
instructions before forwarding it to the LCUs.

• downtime: A library to create, manage and
communicate a database of downtime of the

7https://observatorycontrolsystem.github.io/

components/configuration_database/

Fig. 2. The schematic drawing, borrowed from the LCO
official page, showing different components used in the
configdb database. It also represent a flow of defining
the database. These basic components are used for the
formation of the telescope-instrument pairs.

telescope and instruments. This database en-
able telescope operation team to keep records
of the duration of unavailability of telescope-
instrument pairs (due to maintenance, upgrada-
tion or technical glitches) and which is accessed
by the operational modules in real-time man-
ner through network. This module is used at
SAAO in its original format without any modi-
fication. It is used to disable the telescopes from
the robotic network if it is used for the manual
operation, student training programs, and the
maintenance.

• observation portal:8 This library (Python
and HTML) is the central package managing
an API driven portal to create semester, col-
laboration, proposal, configurations, and many
other useful tasks related to the operations
for any observatory. It also has capabilities
of sending out automated notifications for the
new proposal calls, status of an active pro-
posal, and communication between telescope
control about the status of the data acquisition
etc. It generates and maintain a comprehen-
sive database which can be accessed for auto-
mated data archiving and visualization. In or-
der to meet the compatibility of the SAAO’s ob-
serving facilities, telescope operation guidelines,
and user requirements, the first level of cus-
tomization was made through applying ‘valida-
tion schema’ and by defining specific ‘configura-
tions’ and without making any actual changes to

8https://observatorycontrolsystem.github.io/

components/observation_portal/
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Fig. 3. The snapshots of the ‘site’ (top), ‘telescope’ (mid-
dle), and ‘optical elements’: filters, slits, grating, half-
wave plates etc (bottom) stored in the database and ac-
cessible through the observation portal API.

Fig. 4. The API instance of the list of science cameras
loaded in the database at SAAO.

the codes. Another advanced level of customiza-
tion is also possible via overriding any serial-
izer in the project (observation portal project
by LCO with forking options), or overriding the
as dict methods of models which are used for
generating API responses. The detailed exam-
ple and methods can be found on the official
page of the LCO’s project. We may need to
adapt more specific customization using over-
rides for the integration of old telescopes to the
IO network. Note that the telescopes we are
integrating with the IO network, were not origi-
nally meant for the robotic modes of operations.

The SAAO’s implementation of these packages
are made using dockers, hosted in the virtual ma-
chines at different servers at SAAO headquarter in
Cape Town, South Africa. The APIs in the dock-
ers are accessed through their respective IPs and
ports (for example http://10.1.100.96:7000 for the
configdb service). The ‘api’ and ‘admin’ compo-
nents are accessible by using these tags in the front of
the IP:PORT combination. The Django web frame-
work server based centralized authentication (OAUTH
scheme hosted at the observation portal database) is
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Fig. 5. The schematic borrowed from the official page
by the LCO describing the hierarchy of properties of a
RequestGroup. These requests can be made through the
submission forms or programmatically using the API.

Fig. 6. The snapshot of a submitted request structured
in JSON format.

used for managing the user accounts for all the mod-
ules. Various important tasks from different services
such as, admin: management of users & proposals,

adding new telescopes, instruments, changing status
of existing pairs, etc; and users: registration, sub-
mitting new observing requests, checking the status
of submitted requests, getting proposal metric etc;
can easily be performed by sending requests to cor-
responding APIs either in batch mode or pragmati-
cally as part of alert management systems. All these
modules are equipped with interactive python shells
preloaded with a list of useful libraries for debug-
ging, updates etc. Within the OCS structure: the
configdb and downtime runs the databases of the
instruments and their availability and they are com-
municated in realtime using internal network com-
munications. The observation portal runs all the
API back-ends related to the members, observation
requests, proposals, logs, schedule information, sta-
tus record of submitted requests etc. For any com-
munication to observation portal, it sends queries
to configdb and downtime to verify and framing any
observing request. Any submitted request, for exam-
ple the one shown in Figure6, can be broken into dif-
ferent parts as shown in Figure 5. The LCUs, hosted
at the computers controlling the different telescopes
and instruments, are communicated through two
way API requests by the OCS as soon the schedule
is uploaded on the OCS server. In order to schedule
the submitted requests we are using a python module
‘adaptive scheduler9 developed by the LCO team.
This scheduler uses Google’s OR-Tools10 as kernel
and avails configurations to support the SCIP, CBC
and GLPK free algorithms. It also supports the op-
timization using premium services like GUROBI11,
but based on our local traffic of the requests, the free
algorithms serves the purpose.

The robotic communications sent form the
io robot, either as direct submissions (calibrations:
bias, flats & arcs) or regular submission (transient
monitoring from the Transient Name Server (TNS)
triggers after quality filtering) are already tested and
being used since last two trimesters. The io robot,
which is an auxiliary service replacing human in-
terventions at the top level with pre-defined setup,
currently filters triggers from both the TNS and
GCN and submits requests to the IO, as applicable.
We are testing other trigger resources like BAWG12

and FINK13 to enable full compliance for following
up observations of the triggers from the LSST. A
more technical paper on IO OCS is in preparation

9https://github.com/observatorycontrolsystem/

adaptive_scheduler
10https://developers.google.com/optimization
11https://www.gurobi.com/
12https://t.me/+lfchnd4klOdmYTYy
13https://fink-broker.org/
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Fig. 7. The snapshot of the IO front-end (https://
ocsio.saao.ac.za) showing a list of submitted requests.
A mojor part of the design of this front-end is taken from
the OCS-EXAMPLE15 project by the LCO.

for the Journal of Astronomical Telescopes, Instru-
ments, and Systems (JATIS).

3. WORK-FLOW AND SUMMARY

The demands of the IO architecture to serve a
centralized brain for communicating the users and
LCUs are best met by the current verison of the
OCS at SAAO. The local production of the LCO’s
modules, because of its flexibility, have been a vi-
tal components of the OCS. The telescope opera-
tions (TOPS) and telescope time allocation com-
mittee (TAC) at SAAO are responsible for man-
aging the proposal submission and time allocation
for any trimester. The respective proposer(s) need
to register at IO frontend16. Any user with al-
ready approved instrument time, submits obser-
vation requests to their assigned proposals. The
submission can be made through the said portal
or programmatically. The requests framed in for-
mats supported by the pre-defined validation schema
are validated in realtime and only the successful
ones are submitted. The submitted requests are
stored in the observation portal database. The
adaptive scheduler runs every 2 minutes to gener-
ate an optimized schedule for all active instruments
and update it on the OCS API. The IOIL analyses
the schedules on a regular interval to check for any
urgent time-critical or rapid response submissions.
It can cancel the ongoing monitoring, if urgent ac-
tion is needed otherwise before every new telescope
pointing the most updated schedule is used. For ev-
ery pointing the IOIL communicates with the LCUs

16https://ocsio.saao.ac.za

for observing instructions and also to get updates
about the data acquisition. It is also responsible for
updating the status tags at the OCS server such as
‘PENDING’, ‘ATTEMPTED’ and ‘COMPLETED’
with a short summary. Once the observation is
tagged as ‘COMPLETED’, a trigger is generated
for the real-time analysis procedures (pipelines) and
the SAAO Science Archive to ingest the data. The
pipelines and archiving system are under commis-
sioning phase.

Figure 7 shows a glimpse of the IO front-end
showcasing the active IO system, listing various
requests from manual and robotic submissions.
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