
Chapter 10

Lines

Introduction
Absorption and emission lines in stellar atmospheres arise from
bound-bound transions in atoms and molecules. Lines are impor-
tant for at least the following reasons:

1. Relative lines strengths depend on the state of ionization
and excitation of an atmosphere, which largely depends on
the temperature. Thus, lines are an important temperature
diagnostic. This also explains why spectral class is so
closely correlated with temperature.

2. The line profile, or more crudely the line width, depend on
the density in the atmosphere. Thus, lines are diagnostics
of density and, indirectly, surface gravity and luminosity.
This explains why luminosity class, which is determined by
the line widths, is also correlated with these properties.

3. The line profile is also modified by gas motions, both ther-
mal motions and bulk motions. This allows the lines to be
diagnostics of bulk motions, such as rotation, turbulence,
and outflows in winds.

4. Changes in the abundance of an element produce more di-
rect changes in line strengths than in the continuum shape,
and so we can use lines to determine the chemical compo-
sition. This has applications in studying the chemical evo-
lution of our galaxy and, more recently, other galaxies and
in studying understanding late-stages of stellar evolution, in
which the products of nuclear burning can be “dredged up”
to the atmosphere.

5. As we shall see, lines have a finite width and an opacity
that drops away from the line center. Thus, the e�ect of
lines on the opacity is to cause it to vary significantly over a
small range in frequency. Lines therefore provide a means
to sample a range of depths, from the upper parts of the at-
mosphere (in the core) to the region of continuum formation
(in the far wings). For example, in the Sun, optical depth
unity in the visual continuum occurs in the photosphere, but
optical depth unity for the optical lines H↵ and Ca II H and
K occurs in the chromosphere. This is a useful diagnostic
tools.
[Include a figure like 7-32 of Mihalas.]

6. The interplay of line opacity and velocity gradients deter-
mines the acceleration of the winds in early-type stars.

Macroscopic and Microscopic Processes
We can divide line broadening mechanisms according to whether
they are microscopic or macroscopic.

Macroscopic broadening is the result of large-scale motions
in the atmosphere, such as rotation, pulsation, and the wind. The
relative motion of di�erent parts of the atmosphere causes their
line profiles to be shifted according to the Doppler shift. When
we average over the atmosphere to obtain a flux, we average over
these shifted profiles, and the result is a profile that is broader but
shallower.

Microscopic broadening is a local process that changes the
line profile over scales much smaller than ⌧ = 1. There are
four microscopic broadening processes: natural broadening due
to their finite lifetimes of excited state, pressure broadening due
to the e�ects of surrounding particles, thermal broadening due to
thermal motion, and microturbulence.

The Line Profile
Natural Broadening
We normally think of excited states as having precise energies.
For example, when we learn quantum mechanics we model the
hydrogen atom using the time-independent Schrödinger equation
and obtain precise energies of the excites states. However, such
a treatment is approximate, because an excited hydrogen atom is
manifestly not a time-indepenent system – it will eventually decay.
When we use the time-dependent Schrödinger equation to model
the decay of an excited state to the ground state, we discover that
the excited state is a superposition of states having a range of
energies. The mean energy is equal to the energy obtained using
the time-independent Schrödinger equation, so there are no shifts,
but the characteristic width of the distribution in energy is ~/⌧, in
which ⌧ is the mean lifetime of the excited state. This is consistent
with the uncertainty principle that �E�t ⇠ ~.
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One can consider the natural broadening of an emission line
as arising from the interplay of the uncertainty principle and the
finite lifetime of the upper state. As the upper state has a finite
lifetime ⌧, it no longer can be considered to have a definite energy,
but rather must be considered as a superposition of states with a
spread in energy of h/⌧. If the transition is between two excited
states, we must take into account the finite width of both. A
detailed quantum mechanical treatment leads to

 (⌫) = �/4⇡2

(⌫ � ⌫0)2 + (�/4⇡)2
, (10.1)

where ⌫0 is the central frequency of the line and � is the damping
width. This is known as the Lorenz profile, and it has a FWHM in
frequency of �/2⇡. As shown in Figure 10.1 , at a given FWHM,
a Lorenz profile is more sharply peaked and had broader wings
than a Gaussian profile.

To calculate �, we sum of the individual damping widths of
the upper and lower states,

� = �u + �l. (10.2)

The damping width of a state i is given by the reciprocal of the
mean lifetime of of the state, which is the sum of the mean lifetimes
of all transitions from that state:

�i =
1
⌧i
=
’
j,i

1
⌧i j
. (10.3)

The mean lifetime of an excited state of an isolated atom is inti-
mately related to the Einstein coe�cients. In a two-level atom,
the expressions A10, B10J⌫(⌫10), and B01J⌫(⌫01) give the proba-
bility per unit time per atom of spontaneous emission, stimulated
emission, and absorption. Thus, the mean lifetime of the upper
and lower states are

⌧1 =
1

A10 + B10J⌫(⌫10)
(10.4)

and

⌧0 =
1

B01J⌫(⌫01)
. (10.5)

In a multi-level atom, we need to consider all of the transitions
that depopulate a state, and so

⌧i =

"’
j<i

Ai j +
’
j,i

Bi j J⌫(⌫i j)
#�1

. (10.6)

Pressure Broadening
Pressure broadening is the result of the interaction of the emitting
atom with the surrounding particles. It is a slight misnomer
because, as we shall see, it leads to both a broadening and a
displacement of the central wavelength. Classically there are
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Figure 10.1: Gaussian (solid), Lorentzian (dashed), and Voigt
(dotted) line profiles with the same FWHM of 2 in units of �⌫.

two components to pressure broadening: impact broadening and
statistical broadening.

Classically, one can consider impact broadening to be the re-
sult of perturbations by passing particles. These will disturb the
emission process and, in e�ect, introduce phase changes into the
emitted wave. The e�ect of these phase changes is to produce a
shifted Lorentz profile; strong encounters dominate the broaden-
ing and weak encounters the shift.

Classically, one can consider statistical broadening to be the
result of the emitting particle finding itself in a field due to the
presense of surrounding particles, which are considered static.
Because the positions of the surrounding particles will vary, the
field will be slightly di�erent for every emitting particle. This
field will e�ect the energy level structure of the emitting particles,
and will lead to a broadening when the emitters are considered
as an ensemble. The most important application of this is linear
Stark broadening in hydrogenic atoms. The 2n

2 sublevels of each
energy levels in an isolated hydrogenic atoms are degenerate, but
split when a field is applied. Further, the splitting is directly
proportional to the field strength. Thus, each hydrogenic atom in
a plasma will have its energy levels split by a di�erent amount, and
this will lead to line broadening. The profile will not in general
be a Lorentzian.

Although the classical ideas are useful to understand the ef-
fects, quantum mechanical calculations now are used for research
purposes. The resulting profiles are similar to but not identical to
Lorentzians.

[Need to give the approximate forms, and state that the shifts

and broadning are proportional to the density.]

Thermal Broadening
If the plasma has a thermal distribution of velocities, the proba-
bility density of finding a particle with a line-of-sight velocity ⇣
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is the Gaussian

p(⇣) = ⇡�1/2⇣�1
0 exp(�⇣2/⇣2

0 ), (10.7)

where ⇣0 ⌘ (2kT/m)1/2 and m is the mass of the particle. The
motion will cause the line to be emitted with a frequency of
⌫0(1+ ⇣/c) in the observer’s frame, and so the emitted profile will
be the Gaussian

 (⌫) = ⇡�1/2�⌫�1
0 exp(��⌫2/�⌫2

0 ), (10.8)

where �⌫ ⌘ ⌫ � ⌫0 and the thermal Doppler width �⌫D is defined
by �⌫D ⌘ ⌫0⇣0/c. The absorption profile will be identical.

Microturbulence
Lines in real stars are observed to be slightly broader than expected
from the combination of natural broadening, pressure broadening,
and thermal broadening. This is usually attributed to “micro-
turbulence”, or small scale random motions of the gas provoked by
convection. We typically assume that the contribution is Gaussian,
and so the total Doppler width is given by the micro-turbulent
velocity width ⇣th added in quadrature with the thermal velocity
⇣0,

⇣2
total = ⇣

2
turb + ⇣

2
0 .

For Sun-like stars, values of ⇣turb ⇡ 2 km s�1 are typical. The
velocities increase with increasing e�ective temperature and de-
creasing gravity, for example, ranging from about 1 km s�1 for
K0V stars to 6 km s�1 for F5V stars and from 2 km s�1 for G5V
stars to 10 km s�1 for G5Ib stars.

Total Line Profiles
If we consider the line broadening mechanisms to act indepen-
dently, we can determine the total line profile by convolving the
individual profiles due to each broadening mechanism. Convolv-
ing Gaussians is easy: the result is a Gaussian whose FWHM is the
quadrature sum of the FWHMs of the individual Gaussians. Per-
haps surprisingly, convolving Lorentzians is equally simple: the
result is a Lorentzian whose FWHM is the sum of the FWHM of
the individual Lorenzians. However, when we convolve a Loren-
tizan and a Gaussian, we obtain a Voigt profile H(a, v) which is
given by

�(⌫) = H(a, x) = a

⇡

π +1

�1

e
�y2

(x � y)2 + a2 dy, (10.9)

where x ⌘ (⌫ � ⌫0)/�⌫D and a ⌘ �/4⇡�⌫D. (In deriving this, we
have assumed that ⇣0 ⌧ c, which is appropriate for stellar atmo-
spheres.) Unfortunately, there is no closed form of the integral: it
has to be evaluated numerically (or approximated).

Figure 10.1 shows pure Gaussian and pure Lorentzian profiles
as well as several intermediate Voigt profiles. All of these profiles
have the same FWHM and same normalization. We can see that
the e�ect of increasing the contribution of the Lorentzian is to
lower the core and raise the wings of the the profile.
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Figure 10.2: Emergent normalized fluxes in the region of H� for
ATLAS12 model atmospheres for log g = 3.5, 4.0, 4.5, and 5.0
(thick) and Te� = 10000 K. Note that the line becomes narrower
as the surface gravity decreases.

Table 10.1: Strömgren-Crawford Diagnostics in BAFG Stars

Parameter BA FG
Te� b � y or c1 b � y
log g H� c1
Z m1

[Compare FWHM of the three components for say H� in the

Sun.]

Line Width as a Gravity Diagnostic
The density increases with surface gravity at a given e�ective tem-
perature. As the density increases, pressure broadening becomes
more important and the observed widths of strong lines such as
H� increase. This is shown in Figure 10.2. Thus, supergiants
have narrower lines than giants, and giants have narrower lines
than dwarfs.

The line profile can be measured spectroscopically, of course,
but Crawford (1958) developed a more e�cient means to measure
its apparent width using filters. He defined two filters centered
roughly on the strong H� line, one narrow filter �n with a FWHM
of about 3 nm, and one wider filter �w with a FWHM of about
15 nm. Their profiles are shown in Figure 10.3. The narrow
filter essentially measures the depth of the line in the core and the
wider filter essentially measures the surrounding continuum. The
ratio of the two, in the form of the H� index, gives an estimate
of the relative depth of the line. Figure 10.4 gives a theoretical
calibration.

Crawford photometry is used to complement Strömgren pho-
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Figure 10.3: The Crawford �n narrow and �w wide filters com-
pared to a stellar spectrum. The filter transmissions are from
Crawford & Mander (1966) as tabulated by Castelli & Kurucz
(2006).

tometry. We have seen that Strömgren photometry of FG stars can
be used to measure Te� (from the b�y color) and log g (from the c1
index). Strömgren-Crawford photometry for BA stars can be used
to measure Te� (from b � y color and c1 index) and log g (from
the H� index). These diagnostics are summarized in Table 10.1.

Equivalent Width
We can define a hypothetical “continuum flux” F

c
⌫ at the frequency

of a line as the flux we would observe if the line had no opacity
but otherwise the atmosphere was unchanged. (This is not self
consistent; removing a line will change the temperature structure
of an atmosphere.) Often we will approximate this by simply
interpolating the flux from the continuum on either side of the
line.

We can then define the normalized absorption depth A by

A ⌘ 1 � (F⌫/F
c
⌫ ), (10.10)

and also the normalized residual flux R by

R ⌘ (F⌫/F
c
⌫ ) = 1 � A. (10.11)

These are obviously just the fraction of the continuum flux re-
moved by the line and remaining. In the Sun, we can define these
in terms of the specific intensity as functions of µ.

As we observe a the spectrum of a star at higher resolution,
each pixel in our detector detectos fewer photons (if the spectro-
graph e�ciency remains constant), and so the spectrum becomes
noisier. Thus, we often cannot observe at a su�ciently high reso-
lution to determine the profile of a line, but instead must measure
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Table 1. Example of table with computed H� indices.

Te� log g [M] Vturb l/H Small Big Beta
3500 0.00 0.00 2.00 1.25 �12.354 �12.505 2.713
3500 0.50 0.00 2.00 1.25 �12.321 �12.493 2.742
3500 1.00 0.00 2.00 1.25 �12.286 �12.477 2.768
3500 1.50 0.00 2.00 1.25 �12.269 �12.476 2.789
3500 2.00 0.00 2.00 1.25 �12.281 �12.498 2.803
3500 2.50 0.00 2.00 1.25 �12.327 �12.549 2.810
3500 3.00 0.00 2.00 1.25 �12.414 �12.634 2.807
3500 3.50 0.00 2.00 1.25 �12.551 �12.757 2.788
3500 4.00 0.00 2.00 1.25 �12.744 �12.919 2.746
3500 4.50 0.00 2.00 1.25 �12.932 �13.069 2.693
3500 5.00 0.00 2.00 1.25 �13.074 �13.175 2.644
3750 0.00 0.00 2.00 1.25 �13.602 �13.660 2.586
3750 0.50 0.00 2.00 1.25 �13.633 �13.689 2.583
3750 1.00 0.00 2.00 1.25 �13.637 �13.693 2.583
3750 1.50 0.00 2.00 1.25 �13.623 �13.683 2.588
3750 2.00 0.00 2.00 1.25 �13.600 �13.666 2.596
3750 2.50 0.00 2.00 1.25 �13.577 �13.649 2.606
3750 3.00 0.00 2.00 1.25 �13.566 �13.645 2.614
3750 3.50 0.00 2.00 1.25 �13.577 �13.659 2.618
3750 4.00 0.00 2.00 1.25 �13.625 �13.700 2.609
3750 4.50 0.00 2.00 1.25 �13.706 �13.766 2.588
3750 5.00 0.00 2.00 1.25 �13.794 �13.837 2.564
4000 0.00 0.00 2.00 1.25 �14.350 �14.405 2.581

(Castelli & Kurucz 2003) with parameters Te� = 5777 K, log g =
4.44377, � = 1.0 km s�1, and [M/H] = 0.0. The SD95 grid gives
H� = 2.581 for the Sun.

For � UMa (B3 V), Napiwotzki et al. (1993) found that the
log g which best fits both H� and H� profiles for Te� = 17 000 K
is log g = 4.24. Interpolating for the same temperature and grav-
ity in our H� grid computed for [M/H] = 0.0 and � = 2 km s�1

we obtain H� = 2.689 which di�ers by �0.05 dex from the ob-
served value 2.694 ± 0.001 (Hauck & Mermilliod 1998)6. SD95
obtained H� = 2.698, which di�ers by +0.04 dex from the ob-
served value. Vice versa, for Te� = 17 000 K we derived log g =
4.31 from the observed H� index, while SD95 yield log g = 4.18.

3. The computed grids of H� index

H� indices were computed as a function of Te� and log g for the
microturbulent velocity � = 2.0 km s�1 for the following metal-
licities: [+0.5], [+0.5a], [+0.2], [0.0], [0.0a], [�0.5], [�0.5a],
[�1.0], [�1.0a], [�1.5], [�1.5a], [�2.0], [�2.0a], [�2.5], [�2.5a],
[�4.0a]. A further table of H� indices was computed for [M/H] =
0.0 and � = 0.0 km s�1. The su�x “a” means that the abundances
of the ↵ elements, O, Ne, Mg, Si, S, Ar, Ca, and Ti are en-
hanced by +0.4 dex over the solar or scaled-solar abundances.
The new-ODFs grids of model atmospheres (Castelli & Kurucz
2003) were used as input models for the computations. There are
476 models for each metallicity. The model parameters of the
grids are given in Table 1 of Castelli & Kurucz (2003). These
models di�er from the Kurucz (1979) model atmospheres for
the atomic line blanketing which was computed with a much
larger number of lines in the new models and with the addi-
tion of the molecular line opacity which was completely left
out in the 1979 models. Furthermore, updated solar abundances
(Grevesse & Sauval 1998), updated continuous opacities, and
72 atmospheric layers instead of 64, were adopted.

6 http://obswww.unige.ch/gcpd/gcpd.html

Fig. 2. The dependence of the H� index on Te� for di�erent gravities,
[M/H] = 0.0 and � = 2 km s�1.

A total of 17 Tables of H� indices for all the above quoted
metallicities is available at the CDS. They are also available
on our web7. They have the form shown in Table 1, where the
Cols. 6 and 7 give the magnitude through the small and big fil-
ter, respectively, at the star surface. The last column lists the final
H� indices after normalization to Vega. The full table available
on the website extends from Te� = 3500 K to Te� = 50 000 K.

4. Dependence of H� on Teff, log g, and metallicity

The dependence of H� on Te� for several di�erent gravities is
shown in Fig. 2 for [M/H] = 0.0 and � = 2 km s�1. H� is a good
gravity index for both giants and dwarfs for Te� � 9250 K pro-
vided that Te� is known rather well in advance. The lower limit
of 9250 K can be progressively shifted toward lower tempera-
tures as the gravity lowers.

The two di�erent normalizations of the indices for Te� �
10 500 K and Te� > 10 500 K give rise to a small discontinuity of
the index at 10 500 K for gravities lower than 3.5 dex. The dis-
continuity was reduced by smoothing H� over Te� from 10 250 K
to 11 000 K. For [M/H] = 0.0 and log g = 2.0 the indices at
10 500 K and 10 750 K are respectively 2.611 and 2.618 without
any smoothing and 2.618 and 2.615 after smoothing. At Te� =
10 500 K the di�erence between the indices obtained with and
without smoothing decreases from 0.007 dex for log g = 2.0
to 0.001 dex for log g = 5.0. We note that the only e�ect of a

7 http://wwwuser.oat.ts.astro.it/castelli/colors/
hbeta.html

Figure 10.4: The Crawford H� index for solar-metallicity stars as
predicted from ATLAS9 LTE model by Castelli & Kurucz (2006).
For BA stars, with Te� from 7500 to 20,000 K, the H� index is an
excellent indicator of surface gravity.
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Figure 10.5: An example of the equivalent width. The area
between normalized residual flux R ⌘ F⌫/F

C
⌫ (solid line) and the

normalized continuum (dotted line) is about 0.86 in these arbitrary
frequency units. Thus, the equivalent width of the line is 0.86.
This is also the area of the rectangle, which has a width of 0.86.

the equivalent width W defined by

W =

π 1

0
A d⌫, (10.12)

or, much more commonly,

W =

π 1

0
A d�. (10.13)

The equivalent width is an integrated quantity, and corresponds to
the width in frequency or wavelength of an imaginary rectangular
line that is completely opaque and has the same “area” as the real
line. This shown in Figure 10.5.

One of the most useful properties of the equivalent width is that
it is independent of the spectrograph resolution. This is because
the finite resolution of a spectrograph e�ectively acts to convolve
the spectrum with a response function. A little consideration
shows that this convolution broadens the line, but keeps its total
area relative to the continuum constant. However, this constant
quantity is exactly the equivalent width.

The Curve of Growth
The curve of growth is a plot of the equivalent width W of an
absorption line against the product of the column density in an
absorber N and the oscillator strength f . The product N f is a
measure of how strong a line is, and ploting this product allows
di�erent lines to be plotted on the same graph by normalizing all
of the lines by this notional strength.

The curve of growth is an important tool for understanding
the behaviour of spectral lines. Historically, it was very important

F⌫

emitting layer

absorbing layer Z

Figure 10.6: The geometry of the simple model for the curve of
growth. An absorbing layer of thickness Z and density n lies
above an emitting layer. We consider only upward rays.

in abundance measurements, both in stellar atmospheres and ther
ISM, but now it has been largely replaced by more direct modelling
of stellar atmospheres and ISM absorption profiles.

Let’s consider a simple model of a uniform line absorbing layer
overlying a continuum emitting layer, as shown in Figure 10.6.
This is not a realistic model of an atmosphere – an atmosphere is
not uniform and the emitting and absorbing layers are intermixed –
but it is a useful first approximation. Furthermore, we will assume
that the emitted continuum intensity F

C
⌫ is sharply peaked in the

outward direction (which allows us to ignore an integration over
solid angle). This allows us to write the emergent flux as

F⌫ = F
C
⌫ e

�⌧, (10.14)

where ⌧ is the normal optical depth though the line absorbing
layer. The equivalent width is given by

W =

π 1

0
d⌫A⌫ (10.15)

=

π 1

0
d⌫

✓
1 � F⌫

F
C
⌫

◆
(10.16)

=

π 1

0
d⌫ (1 � e

�⌧) . (10.17)

The optical depth is given by

⌧(⌫) =
π

dz ↵(⌫) (10.18)

= ↵(⌫)Z (10.19)

=

✓
⇡e

2

mec

◆
nZ f �(⌫) (10.20)

=

✓
⇡e

2

mec

◆
N f �(⌫) (10.21)

= T�(⌫) (10.22)

in which the column density N is given by

N ⌘ nZ (10.23)
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Figure 10.7: The observed residual flux R ⌘ F⌫/F
C
⌫ for the simple

model for the curve of growth. The dashed line is the assumed
line profile. The dotted line is the continuum. The solid lines are
the emergent fluxes F⌫ for total line opacity T =

Ø
d⌫ ⌧ of 1/4, 1,

4, 16, . . . , 16384.

and the optical depth integrated over the line T is given by

T ⌘
π

d⌫ ⌧(⌫) (10.24)

=

✓
⇡e

2

mec

◆
N f . (10.25)

Thus, we see that in general the equivalent width depends both on
the line strength (N f or T) and on the line profile (�).

We now consider three cases, of increasing line strength.

(a) Weak lines.
For weak lines, ⌧ ⌧ 1 and so we can approximate e

�⌧ as
1 � ⌧. In this case, we have

W =

π
d⌫⌧(⌫) (10.26)

= T

π 1

0
d⌫0�(⌫0) (10.27)

= T (10.28)

Thus, we have W = T the curve of growth will be linear.

(b) Lines saturated in the Gaussian core.
Eventually, the line will saturate when the optical depth
in the line center is large and the residual flux in this part
of the line falls essentially to zero. This can be seen in
Figure 10.7. In this case, the contribution of the central
part of the line to W will cease to grow and W grows only
as the central part widens. The transition from the optically
thick core the the optically thin wings will be abrupt, and

the absorption line profile becomes quite rectangular. In
Figure 10.7, this regime corresponds to T = 16 to T = 256
The equivalent width will be roughly the FW at the point
that the optical depth in the line reaches 1. Thus,

1 ⇡ T�(⌫0 +W/2) (10.29)

Since the core is a Doppler profile, we have

1 ⇡ T⇡�1/2�⌫�1
0 exp(�W

2/4�⌫2
0 ) (10.30)

or

exp(W2/4�⌫2
0 ) ⇡ T⇡�1/2�⌫�1

0 (10.31)

or

W / 2�⌫0

h
ln(T⇡�1/2�⌫�1

0 )
i1/2
. (10.32)

This is known as the flat or saturated part of the curve
of growth, as it grows so slowly – as the square root of the
logarithm of the line strength. In Figure 10.7, it corresponds
to the crowding of lines from about T = 16 to T = 256,
in which even though the total opacity of the line increases
by a factor of 16, the area corresponding to the equivalent
width only grows moderately.

(c) Lines saturated in the Lorentzian wings.
Eventually, though, the Lorentzian damping wings become
important. Again, approximating the line as a rectangle
(although this is now no longer such a good approximation),
we have

1 ⇡ T
�/4⇡2

(W/2)2 + (�/4⇡)2 , (10.33)

but when W � �,

1 ⇡ T
�/4⇡2

(W/2)2 , (10.34)

or

W ⇡ ⇡�1p
T� (10.35)

This is known as the square-root or damped part of the
curve. Growth resumes as

p
T , which is faster than in the

flat part but not as fast as in the linear part. In Figure 10.7,
it corresponds to the crowding of lines above T = 256, in
which the area starts to grow again more rapidly than in the
saturated regime.

Figure 10.8 shows the theoretical curve of growth for the
profile in Figure 10.7. The linear part is below logT ⇡ 0.5, the
flat part from logT ⇡ 1 to logT ⇡ 2, and the square-root part is
above logT ⇡ 3.

The form of the curve of growth is important in the practice of
determining abundances from absorption lines. Essentially, the
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Figure 10.8: The curve of growth for the profile in Figure 10.7.
The linear, flat, and square-root regimes are marked by (a), (b),
and (c).

idea is that we can measure W and use the curve of growth to
determine T with in term gives is the columns density N . If we
do this for lines of di�erent species, we can measure their relative
abundances.

However, let us for a moment consider that we will always
measure W with some uncertainty �W . How does this translate
into errors in T and hence N? From propagation of uncertainties,
we know

�2
T =

✓
@T

@W

◆2
�2
W . (10.36)

Since W is monotonic in T , we can simplify this to

�T =

✓
@T

@W

◆
�W . (10.37)

Next, we can rearrange this equation to give us the relative uncer-
tainties, �W/W and �T /T , obtaining

T

⇣�T
T

⌘
= W

✓
@T

@W

◆ ⇣�W
W

⌘
(10.38)

⇣�T
T

⌘
=

✓
W@T

T@W

◆ ⇣�W
W

⌘
(10.39)

⇣�T
T

⌘
=

✓
@ lnT

@ ln W

◆ ⇣�W
W

⌘
(10.40)

Thus, for a given fixed uncertainty in the measurement�W/W , the
uncertainty in the total optical depth and the abundance is larger
by a factor of the logarithmic derivative @ lnT/@ ln W . This is the
inverse gradient in the curve of growth. In the linear regime this
factor is 1; in the flat regime this factor is very much greater than
1; and in the square-root regime this factor is 2. Thus, to obtain
the smallest relative errors in the abundance, we should favor first

logW

logT

Figure 10.9: Propagation of errors in a schematic curve of growth.
For a given relative error in W (represented by the pairs of dashed
lines), the relative error in T (represented by the pairs of dotted
lines) is smallest in the linear regime, and then next smallest in
the square-root regime, and largest by far in the flat regime.

lines in the linear regime, then lines in the square-root regime,
and probably not even both with lines in the flat regime.

This result can be seen graphically. Consider Figure 10.9,
which shows a segment of a hypothetical curve of growth. We
represent three measurements of W each with the same relative
error as three pairs of dashed lines. These pairs of lines have the
same separations, since the axes are logarithmic. We then obtain
the corresponding measurements of T by extending dashed lines
from the log W axis to the curve of growth and then extending
dotted lines down to the logT axis. We see that the relative error
in T is smallest in the linear regime, then twice as large in the
square-root regime, and much larger in the flat regime.

While the curve of growth was used in early studies of abun-
dances, modern studies fit model fluxes from model stellar atmo-
spheres to observed fluxes, iterating and adjusting the abundances
in the atmosphere until the best match is found. Nevertheless,
the curve of growth tells us while lines will be most sensitive for
determining the abundances: weak unsaturated lines and strong
damped lines.


