
Chapter 3

Simplifying Approximations

In this chapter we will introduce a number of widely-used ap-

proximations that can simplify considerably the solution of the

equation of radiation transfer in atmospheres.

Coherent and Isotropic Scattering
Scattering is easy to incorporate into extinction – we simply in-

clude its contribution to the extinction coe�cient – but a gen-

eral treatment of the scattered emissivity is somewhat involved;

Schuster (1905, p. 5), in his pioneering investigation of scatter-

ing in stellar atmospheres, notes that “the complete investigation

leads to equations of such complexity that a discussion becomes

impossible”.

Given this, we will make two simplifying assumptions. First,

we will assume that the scattering is coherent, so that the scatter-

ing does not change the frequency of the photon. Second, we will

assume that the scattering is isotropic, so that photons are emitted

with equal probability into all directions. Under these assump-

tions, the energy removed from the radiation field by scattering in

a volume dV , a frequency interval (⌫, ⌫ + d⌫), and a time interval

(t, t + dt) must be equal to the energy added to the radiation field

by scattering in the same volume dV , the same frequency inter-

val (⌫, ⌫ + d⌫), and the same time interval (t, t + dt). From the

definition of the extinction coe�cient and the emissivity, we then

have π
4⇡

d⌦ �I⌫ =
π

4⇡
d⌦ js

⌫ (3.1)

4⇡�J⌫ = 4⇡ js

⌫ . (3.2)

Thus, the scattered emissivity is given by

js

⌫ = �J⌫ . (3.3)

Local Thermodynamic Equilibrium
In general, to determine the true emissivity je⌫ and the absorption

coe�cient ↵, we need to determine the state of matter in the atmo-

sphere. As we will see, this is often quite di�cult because of the

coupling between radiation and matter. For this reason, we often

make adopt the simplifying assumption of local thermodynamic

equilibrium (LTE).

In perfect thermodynamic equilibrium, we have detailed bal-

ance in all processes. Detailed balance means that the rate of a

process and its inverse are equal, and follows from the symme-

try of the laws of microscopic physics under time reversals. If

we consider absorption and emission, in perfect thermodynamic

equilibrium we have

je

⌫ = ↵I⌫ . (3.4)

However, we also have that I⌫ = B⌫ , and so we derive Kircho�’s

law, that in perfect thermodynamic equilibrium

je

⌫ = ↵B⌫(T). (3.5)

It’s important to remember that is true only in perfect thermody-

namic equilibrium, and that stellar atmospheres are not in perfect

thermodynamic equilibrium (as witnessed by, for example, the

flow of energy with them).

In the approximation of local thermodynamic equilibrium

(LTE), we assume that the matter has thermodynamic equilibrium

properties at the local temperature and density but the radiation

does not. In particular, the velocities of particles is assumed to

be given by the Maxwell distribution, the abundances of chemical

species is assumed to be given by the Saha distribution, and the

populations of energy levels is assumed to be given by the Boltz-

mann distribution, but we do not assume that the specific intensity

is given by the Planck function. The emissivity and extinction co-

e�cient are determined by the state of matter, so Kircho�’s law

will still apply in LTE, and we still have

je

⌫ = ↵B⌫(T). (3.6)

It is vital to remember that these results are not true in gen-

eral; in order to obtain them, we had to assume LTE. Radiation

emitted by matter in LTE (or, more accurately, matter that is well-

approximated by the LTE approximation) is known as thermal

radiation.

LTE significantly simplifies the solution of the equation trans-

fer, in that it reduces the state of matter at each point to two

variables – the temperature and the density. Nevertheless, the
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problem is still complicated, as the temperature is determined by

the interaction of radiation with matter.

Note that LTE is an internally inconsistent approximation; the

occupation numbers will only have their true thermal equilibrium

values if the temperature is uniform and the radiation field iso-

tropic and Planckian. Both of these requirements are violated

in stellar atmospheres, in which we often have large temperature

gradients and in which the radiation field is sharply peaked in the

outward direction and is non-Planckian. The LTE approximation

in not too bad for the velocity distribution of particles; colli-

sions are su�ciently frequent to maintain a single-temperature

Maxwellian distribution. However, it is much worse for the ion-

ization and excitation distributions. To be fully consistent, we

would have to adopt a completely non-LTE approach and directly

model the processes that create and destroy chemical species and

populate and depopulate energy levels. We will use this approach

in the later parts of this book, but for the meantime we will adopt

the LTE approximation.

In LTE we have je

⌫ = ↵B⌫ , and so in general the source function

is

S⌫ ⌘ j⌫
�
=
↵B⌫ + js

⌫

↵ + �
. (3.7)

Two important special cases of this are the absence of scattering,

which has js

⌫ = 0 and

S⌫ = B⌫, (3.8)

and coherent, isotropic scattering, which has js

⌫ = �J⌫ and

S⌫ =
↵B⌫ + �J⌫
↵ + �

. (3.9)

Radiative Equilibrium
Stellar atmospheres are often assumed to be in thermal equilib-

rium. By this we mean that the temperature at a given point is

constant in time,

@T(r)
@t
= 0. (3.10)

In the plane-parallel approximation, this requires that the total flux

of energy be conserved throughout the atmosphere. A special case

of thermal equilibrium is radiative equilibrium, in which the flux

of energy is carried entirely by radiation. In this case, in the plane-

parallel approximation, F is constant throughout the atmosphere,

or in other words dF/dz = 0. The same radiative flux is found

entering the atmosphere from below, leaving it to above, and in

all intermediate layers.

The constancy of F is a global statement of the condition of

radiative equilibrium in a plane-parallel atmosphere. We can also

devise a local statement: that the radiative energy absorbed in a

small volume must be equal to the radiative energy emitted by the

same volume. If this were not the case, the volume would su�er

a net gain or loss of energy and would rise or fall in temperature.

From the definition of the extincion coe�cient, we can see that

the total radiative heating rate per unit volume is

π 1

0

dv
π

4⇡
d⌦�I⌫ = 4⇡

π 1

0

dv�J⌫, (3.11)

where in substituting J⌫ we have assumed that � is isotropic.

Similarly, from the definition of the emissivity, the total radiative

cooling rate per unit volume is

π 1

0

dv
π

4⇡
d⌦ j⌫ = 4⇡

π 1

0

dv j⌫, (3.12)

where again we have assumed that j⌫ is isotropic. In radiative

equilibrium, we have the local condition

π 1

0

dv �J⌫ =
π 1

0

dv j⌫ . (3.13)

Note that in deriving the local condition we have not made any

assumption about the geometry of the atmosphere. Thus, the

local condition holds in any atmosphere in radiative equilibrium,

whereas the global condition that F is constant is true only for a

plane-parallel atmosphere in radiative equilibrium. For example,

in a spherically symmetric atmosphere in radiative equilibrium,

F drops as 1/r2
.

At first glance, it seems odd that in a plane-parallel atmosphere

we have two statements of the condition for radiative equilibrium:

dF/d⌧ = 0 and

Ø 1
0

dv �J⌫ =
Ø 1
0

dv j⌫ . However, as we might

expect, the two are equivalent, and each implies the other. This is

explored in Problem 3.1.


