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Chapter 5

Hydrostatic Equilibrium

Looking forward, we will shortly need to determine the non-
grey opacity of matterin a stellar atmosphere. We will do this
first under the assumption of LTE, and the calculation will have
as parameters the given composition, the temperature, and the
density. The temperature can be obtained from the requirement
for thermal equilibrium, but up to this point we have nothing
to constrain the density. In this chapter, we will address that
shortcoming.

Mechanical Equilibrium

We often assume that stellar atmospheres are in mechanical equi-
librium, with no net force on each element of gas. If they were
even slightly out of mechanical equilibrium, they would rapidly
expand or collapse on a timescale comparable to the free-fall time
or sound-crossing time; for the Sun this is about half an hour.

Of course, there is a part of a star that does expand rapidly – the
wind – and there are stars that pulsate, but assuming mechanical
equilibrium is a good approximation for most photospheres.

Hydrostatic Equilibrium

The dominant forces in a stellar atmosphere are gravity and pres-
sure. Thus, mechanical equilibrium requires balancing the in-
wards force of gravity and the outwards pressure force. This
special case of mechanical equilibrium is known as hydrostatic
equilibrium.

We will now determine the condition of hydrostatic equilib-
rium in plane-parallel geometry. Consider an element of gas
whose volume is dV . This volume is constructed by translating
an area dA perpendicular to the z axis a distance dz.

The inwards force of gravity on the element is

⇢gdV (5.1)

in which ⇢ is the density and g is the gravitational acceleration
towards the center of the star. The outwards pressure force on the
element is

P(z)dA � P(z + dz)dA, (5.2)
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Figure 5.1: The geometry used in the derivation of the equation
of hydrostatic equilibrium.

in which P is the pressure, and the first term is the upwards
force on the lower surface of the volume and the second term
is the downwards force on the upper surface of the volume. In
hydrostatic equilibrium, these must balance, and we have

P(z)dA � P(z + dz)dA = ⇢gdV . (5.3)

Expanding P for small dz gives

P(z)dA �

P(z) + dz

dP

dz

�
dA = ⇢gdV, (5.4)

or

dP

dz
= �⇢g. (5.5)

This is known as the equation of hydrostatic equilibrium. Note
that since ⇢ and g are positive, dP/dz is negative and the pressure
must decrease outwards with z.

We often assume that the atmosphere is thin compared to the
radius of the star, so the gravity does not change significantly
within the atmosphere. That is, we assume that g is a constant
equal to the surface gravity GM⇤/R

2
⇤

The Equation of State

The pressure that provides support against gravity is a combination
of gas and radiation pressure. (In this context, by “pressure” we
do mean “force per unit area” rather than “momentum flux”.) The
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radiation pressure can be very important in hot stars and evolved
stars, but for the moment we will ignore it and assume that the
pressure is dominated by gas pressure.

For an ideal gas, the density and pressure are given by

⇢ = nµmH (5.6)

and

P = nkT (5.7)

=
⇢kT

µmH
. (5.8)

in which n is the particle density, ⇢ is the mass density, µ is the
mean molecular mass, and mH is the mass of the proton. Thus,
we see that the increase in pressure with depth can be provided by
an increase in temperature, an increase in density, or a decrease
in mean molecular mass (through increasing ionization). It’s
typically a combination of all three.

The Pressure Scale Height

If we divide the equation of hydrostatic equilibrium on both sides
by the pressure, we obtain

1
P

dP

dz
=

d ln P

dz
= � ⇢g

P
⌘ � 1

H
. (5.9)

This defines the pressure scale height H ⌘ P/⇢g, the characteristic
distance for changes in the relative pressure.

As we can see, the pressure scale height depends on the equa-
tion of state – the relation between pressure and density – for the
material and on the surface gravity. For an ideal gas, we have

H =
kT

µmHg
. (5.10)

Since T/µ will in general not be constant in a real atmosphere,
H will also not be constant and so we normally cannot integrate
d ln P/dz = 1/H directly.

We can obtain a slightly di�erent form of the equation of
hydrostatic equilibrium by dividing equation 5.9 by ��, obtaining

d ln P

d⌧
=

1
�H
=

l

H
. (5.11)

Thus, we see that the ratio of the mean free path for a photon l to
the pressure scale height l defines the scale of the relative change
in the pressure per unit optical depth. If l/H is large, the pressure
changes dramatically, whereas if l/H is small, the change is less
significant.

The pressure scale height in the solar atmosphere at the point
that T = Te� is 290 km. On the other hand, the physical extent of
the solar atmosphere is about 1000 km. Thus, we should expect
that in the Sun the pressure does change dramatically through the
solar atmosphere.
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Figure 5.2: The value of T(⌧)/T(1) (solid line) and ⇢(⌧)/⇢(1)
(dashed line) for an LTE grey atmosphere with constant µ and a.
The value of ⇢(⌧)/⇢(1) for an isothermal atmosphere is shown as
a dotted line.

The Constant Scale-Height Atmosphere

Let’s start by considering an atmosphere with a constant scale
height. If H is constant, we can integrate d ln P/dz = 1/H

directly to give

P = P0e
�(z�z0)/H , (5.12)

in which we have applied an arbitrary boundary condition that
P(z0) = P0. We see that pressure increases exponentially inwards.
Each time the depth into the atmosphere increases by H, the
pressure rises by a factor of e.

One theoretical example of a constant scale-height atmosphere
is an isothermal atmosphere (dT/dz = 0) with a constant molec-
ular mass (dµ/dz = 0). This is approximately appropriate for the
lower atmosphere of the Earth, but not for a stellar atmosphere.

The Grey Atmosphere

In a grey atmosphere in LTE and in the absence of scattering, the
temperature increases with depth as

T
4 =

3
4

T
4
e�[⌧ + q(⌧)]. (5.13)

Thus, we would expect the density to increase less quickly than
exponentially, since the increasing temperature makes some con-
tribution to the increasing pressure.

We adopted the plane-parallel approximation by assuming that
the atmosphere was thin compared to the radius of the star. Given
this, we can also assume that the surface gravity g ⌘ GM/R

2 is
constant.
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The condition of hydrostatic equilibrium requires

dP

dz
= �⇢g. (5.14)

Dividing by d⌧/dz = ��, we find

dP

d⌧
=

✓
⇢

�

◆
g. (5.15)

If we write ⇢ and � in terms of the mean molecular mass µ and
the mean cross-section a using ⇢ = µmHn and � = an, we obtain

dP

d⌧
=
⇣ µ

a

⌘
mHg. (5.16)

For simplicity, we will now assume that µ and a are constant in
the atmosphere, in which case we can integrate to obtain

P(⌧) =
⇣ µ

a

⌘
mHg⌧ + P(0). (5.17)

At the surface of the atmosphere, the density must tend to zero,
and so P(0) must also tend to zero. Thus,

P(⌧) =
⇣ µ

a

⌘
mHg⌧. (5.18)

We see that in this atmosphere, the pressure rises roughly linearly
with ⌧ and, moreover, roughly linearly with the surface gravity g.

The density is given by

n(⌧) = P

kT
. (5.19)

Substituting for the temperature in a grey atmosphere, we obtain

n(⌧) =
✓
4
3

◆1/4 ✓ µmH
akTe�

◆
g⌧ [⌧ + q(⌧)]�1/4 . (5.20)

For ⌧ ⌧ 1, ⌧ + q(⌧) ⇡ q(0) and so the dependence on ⌧ is linear.
For ⌧ � 1, ⌧ + q(⌧) ⇡ ⌧ and so the dependence changes to
⌧3/4. The exact behaviour of T and ⇢ are shown in Figure 5.2.
Throughout the atmosphere, though, the density increases with ⌧.
Moreover, the density at a given ⌧ depends linearly on the surface
gravity.

It’s worth comparing this result for the grey atmosphere with
the result for an isothermal atmosphere with the same restrictions
on µ and a. In this case, we would have found that P / ⌧. This is
also shown in Figure 5.2. We see that the grey atmosphere is quite
close to the isothermal atmosphere until ⌧ becomes large and the
increasing temperature begins to slow the increase in density.

Real atmospheres are not grey and do not have constant molec-
ular masses and mean cross-sections. Nevertheless, real atmo-
spheres show these tendencies: the density increases with ⌧ in a
given atmosphere and the density increases with increasing g at a
given ⌧.

Surface Gravity

We have seen that the surface gravity g = GM⇤/R
2
⇤ has a crucial

role in determining the density in an atmosphere. The surface
gravity is conventionally given as log g, the base-10 logarithm
of g in cm s�2. Dwarfs stars (luminosity class V) typically have
surface gravities of 4.0 to 4.6, giant stars (luminosity class III)
have typical surface gravities from 3.8 to 1.7, and supergiant stars
(luminosity class Ib) have typical surface gravities from 2.0 to 0.7.
Thus, dwarfs typically have denser atmospheres than giants and
giants typically have denser atmospheres than supergiants.


