
Chapter 6

The LTE Extinction Coe�cient

In this chapter, we will assume both LTE and coherent and
isotropic scattering. With these assumptions, we can write the
radiation transfer equation in terms of the local density, temper-
ature, composition, and mean intensity. This is an enormous
simplification.

In general, to solve an atmosphere, we need both the extinction
coe�cient � and the source function S⌫ . With these, we can
integrate the formal solution.

Under the assumption of LTE, all properties of matter are
properties of the local temperature, density, and composition.
This includes the extinction coe�cient � and its components the
absorption coe�cient↵ and the scattering coe�cient�. However,
under the assumptions of both LTE and coherent and isotropic
scattering, equation 3.9 gives

S⌫ =
↵B⌫ + �J⌫
↵ + �

. (6.1)

Thus, we see that the source function also depends only on the
local properties of the matter, through B⌫(T), ↵, and �, and the
local mean intensity J⌫ .

The solution for a static atmosphere in LTE and with coherent
and isotropic scattering thus has two parts. The first is the deter-
mination of ↵ and � for given properties of matter. The second
is the determination of the temperature and density in a manner
that satisfies the equation of transfer of radiation, thermal (often
radiative) equilibrium, and mechanical (often hydrostatic) equi-
librium. These two parts are coupled (since radiation determines
the properties of the material and the properties of the material
determine radiation), and so the solutions is typically iterative.

In this chapter, we will address the determination of ↵ and �
for a given temperature, density, and composition. We will defer
solution of the global problem for a subsequent chapter.

The Extinction Coe�cient in Microscopic
Terms
To proceed, we need to relate the macroscopic extinction co-
e�cient, with its absorption and scattering components, to the
microscopic properties of the material.

Consider Figure 6.1, which shows the volume dV formed by
sweeping an area dA centered on r thought a length ds parallel
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Figure 6.1: The geometry of the definition of cross-section

dA

Figure 6.2: The cross-section interpreted classically.

to n which is perpendicular to dA. Consider dV is filled with a
single type of particle with number density n. If these particles
can interact with radiation, there is a probability that a photon that
enters dV in the direction n will be absorbed or scattered. We
define the cross-sections for absorption aa and scattering as such
that the probability of absorption or scattering of a photon is given
by naads and nasds. (It is conventional to use � to denote the
cross-section, but here we will use a to avoid confusion with the
scattering coe�cient �.)

Naively, we can interpret the cross-section as the area around
a particle within which the probability of interaction is 1 and out-
side of which the probability is 0. This is illustrated in Figure 6.2.
Under this interpretation, the total area in dV for interactions is
the number of particles in dV is the total number of particles ndV
multiplied by the cross-section per particle a. Thus, the probabil-
idad of an interaction is ndVa/dA = nads. This discussion helps
motivate the definition of a, but we must remember that quan-
tum mechanics teaches us that the interaction is probabilistic, not
deterministic like this.

If we have many types of particles, the total probability of
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absorption or scattering is given by (Õi niaa
i )ds and (Õi nias

i )ds,
in which the index i extends over all types of particles.

We saw in Problem 2.1 that the probability density function
for the absorption of a photon is an exponential distribution in the
optical depth ⌧ with a mean of 1. Thus, the probability P(< d⌧)
that a photon is extinguished between ⌧ = 0 and ⌧ = d⌧ is

P(< d⌧) = 1 � exp�d⌧ (6.2)
= 1 � (1 � d⌧) (6.3)
= d⌧, (6.4)

in which we have expanded for small d⌧. Now, since

d⌧ = �ds (6.5)
= (↵ + �)ds, (6.6)

by comparison to our definition of the cross-section, we can iden-
tify absorption and scattering coe�cients as

↵ =
’
i

niaa
i (⌫) (6.7)

and

� =
’
i

nias
i (⌫), (6.8)

in which ni is the number density of particles of type i and aa
i (⌫)

and as
i are the absorption or scattering cross-section per particle

at frequency ⌫.
Thus, we can divide the problem of determining the opacity

into two subproblems: determining the number densities ni and
determining the cross-sections ai .

Distributions and Densities
The assumption of LTE is that matter has the same state as it
would in thermodynamic equilibrium at the same density and
temperature, and we can use this to determine the number densities
ni of particles.

For matter in thermodynamic equilibrium and hence also for
matter in LTE, Boltzmann’s relation requires that probability P of
finding a system in a given state satisfies

P / ge�E/kT , (6.9)

where g is the degeneracy and E is the energy of the state (Reif
1965, pp. 201–203). The constant of proportionality can be found
from the normalization condition that

Õ
P = 1. From Boltz-

mann’s relation and a knowledge of the degeneracies g and ener-
gies E of all states, we can derive the distributions of velocities,
excitation, and ionization for matter in thermal equilibrium and,
hence, in LTE.

We will typically apply the continuum approximation, that the
scale of the macroscopic system is su�ciently large that the den-
sity of particles in a given state n is proportional to the probability

P of finding the system in that state. Thus, for two states a and b,
the relative densities are given by

na

nb
=

Pa

Pb
. (6.10)

Velocity Distribution
The probability dP that a particle of mass m has a velocity between
v and v + dv is given in terms of the probability distribution
function f (v) by

dP ⌘ f (v)dv. (6.11)

In thermodynamic equilibrium we can use the Boltzmann relation,
which gives us

f (v)dv / g(v)dv e�E(v)/kT . (6.12)

If the mass of the particle is m, then the energy E(v) is just the
kinetic energy 1

2 mv2. The factor g(v)dv is the number of states
between v and v+dv. Thinking back to basic quantum mechanics,
and in particular to the the particle in a box, the density of states
in position-momentum phase space is 2/h3, where the 2 comes
from the two spin states of the particle (which we assume to be a
spin-1/2 fermion) and the h3 from the packing of wave functions.
The volume of phase space per particle is the product of volume of
position space per particle, the inverse of the density n, and to the
volume of momentum space corresponding to speeds between v
and v+ dv, which in turn is proportional to 4⇡p2dp = 4⇡m3v2dv.
So,

g(v)dv = 8⇡m3v2

nh3 dv, (6.13)

and

f (v) / v2e�
1
2 mv2/kT . (6.14)

Applying the normalization condition that
Ø 1
0 dv f (v) = 1, we

obtain the constant of proportionality and in full we have

f (v) = 4⇡
⇣ m
2⇡kT

⌘3/2
v2e�

1
2 mv2/kT . (6.15)

This is the Maxwell distribution for particle velocities.
We can integrate the energy and the momenum flux of each

particle over the distribution to obtain the energy density 3
2 nkT

(assuming ideal particles with no internal degrees of freedom) and
the pressure nkT . The mean kinetic energy per particle 1

2 m
⌦
v2↵

is 3
2 kT . Thus, the RMS speed is

⌦
v2↵1/2

=

✓
3kT
m

◆1/2
. (6.16)

That is, the RMS speed is proportional to the square root of the
temperature and inversely proportional to the square root of the
mass. Cooler and more massive particles have lower RMS speeds;
this will be important when we consider the Doppler broadening
of lines.
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Excitation Distribution
In thermodynamic equilibrium, and hence in LTE, the relative
probability that an atom will be found in an excitation state i
is given directly by the Boltzmann relation. By excitation state
we mean an arrangement of a fixed number of electrons forming
a bound state of the atom. The density of atoms in an given
excitation state is directly proportional to the probability that an
individual atom will be found in that state. If we denote by ni jk the
density of atoms in excited state i of ionization state j of species
k, the population of a state i relative to the ground state is

ni jk
n0jk

=
Pi jk

P0jk
=

gi jk

g0jk
e�Ei jk /kT , (6.17)

where Ei jk is the energy of the excited state above the ground state
and gi jk is the degeneracy of a given state. This can obviously be
extended to give the relative populations of two excited states.

We can sum over all states to obtain the total density njk of
atoms of ionization state j of species k, obtaining

njk ⌘
’
i

ni jk (6.18)

= n0jk
’
i

ni jk
n0jk

(6.19)

=
n0jk

g0jk

’
i

gi jke�Ei jk /kT . (6.20)

We can write this more concisely as

njk =
n0jk

g0jk
Ujk, (6.21)

where the partition function Ujk is defined by

Ujk ⌘
’
i

gi jke�Ei jk /kT (6.22)

and the sum extends over all bound states. From this, the popula-
tion of the ground state is

n0jk =

✓
njk

Ujk

◆
g0jk, (6.23)

and, generalizing, the population of the excitation state i is

ni jk =
✓

njk

Ujk

◆
gi jke�Ei jk /kT . (6.24)

This is a particularly useful for calculations, as it gives the popula-
tion of each state i as a function of its degeneracy, the temperature,
and the density of all atoms in the ionization state.

Disconcertingly, the partition function for an isolated atom
is divergent, as an isolated atom has an infinite number of bound
states and a upper-bound for Ei jk is �jk , the ionization potential of
ionization state j of species k. However, in real systems this is not
a problem, since the higher bound states are increasingly spatially

extended and so at some point in a real system the interaction of
the electron with the enviroment will cause these states to cease
to be bound. For example, in an ionized gas, the presence of free
electrons causes the outermost states of an atom to be unbound.
If the density of free electrons is ne, the potential of a nucleus of
charge Z will be sheilded beyond the Debye length LD. This leads
e�ectively to the ionization potential being reduced by

�� ⇡ Ze2

LD
, (6.25)

⇡ 3 ⇥ 10�8 Zn1/2
e T�1/2 eV, (6.26)

when ne and T are measured in cm�3 and K. For typical values
of, say, ne = 1014 cm�3 and T = 104 K, this lowering is only
3 ⇥ 10�3 eV, and so it will not significantly change the ionization
structure or the position of ionization edges. However, it is enough
to give only a finite number of bound states. To see this, consider
the outer wave functions of atoms, which can be approximated by
hydrogenic wave functions with an e�ective nuclear charge of Z .
In this case, the excited state with principal quantum number n
lies 13.6Z2/n2 eV below the continuum. Equating this with the
energy by which the ionization potential is lowered by the free
electrons, we see that the last bound state has principal quantum
number nmax given by

nmax ⇡ 2 ⇥ 104 Z1/2n�1/4
e T1/4. (6.27)

At ne = 1014 cm�3 and T = 104 K, we have

nmax ⇡ 60Z1/2. (6.28)

However, this is enough that the sum in the partition function for
an atom in a stellar atmosphere should only extend over some tens
or hundreds of states, rather than over an infinite number of states,
and the partition function should be finite. On the other hand,
it is su�ciently high that the inner wave functions, which result
in transitions at high frequencies, in the ultraviolet, optical, and
infrared, are not significantly perturbed.

Although the partition for an isolated atom is a function of tem-
perature only, the partition function for an atom in an atmosphere
is a function of both the temperature and the electron density,
because of the direct dependence on T of the Boltzmann factors
and the indirect dependence on both T and ne of the number of
bound states. However, the later dependence is weak enough that
it is usually ignored, and the number of bound states is calculated
for characteristic values of, say, ne = 1014 cm�3 and T = 104 K.
The dependence of partition functions on T is relatively smooth,
so polynomial approximates are more commonly used.

Ionization Distribution
We can calculate the populations of di�erent ions of the same
species in thermodynamic equilibrium, and hence LTE, by apply-
ing the Boltzmann relation and taking into account the continu-
ous states available to a free electron. Consider one discrete state
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formed by the ground state of a neutral atom and another state
formed by the ground state of the corresponding singly-ionized
ion and an electron. The probability that the atom is in the ground
state and neutral is P00k and the probability that the atom is in
the ground state and ionized and the electron has speed between v
and v+ dv is P01k f (v)dv, where f (v) is the Maxwell distribution.
The ionized atom and the electron are independent, hence their
probabilities and degeneracies are multiplicative. Applying the
Boltzmann relation we have

P01k f (v)dv
P00k

=
g01kg(v)dv

g00k
e�(�0k+

1
2 mev

2)/kT . (6.29)

In this, �0k is the ionization potential of the ground state of
the neutral atom. Using the degeneracy of free electron states
g(v) = 8⇡m3

ev
2/neh3, obtained in our derivation of the Maxwell

distribution, and dividing by f (v), we obtain

n01k
n00k

=
P01k
P00k

=
2
ne

✓
2⇡kTme

h2

◆3/2
g01k
g00k

e��0k /kT . (6.30)

We’ve not made any explicit reference to the lack of charge on the
atom, so we can generalize this equation to any two subsequent
stages of ionization j and j + 1, obtaining

n0, j+1,k

n0, j ,k
=

2
ne

✓
2⇡kTme

h2

◆3/2 g0, j+1,k

g0, j ,k
e��jk /kT . (6.31)

This gives the ionization balance between the ground states of
two subsequent ionization stages. If we use n0jk = njkg0jk/Ujk ,
then we can write the ionization balance between all states of two
subsequent ionization stages as

nj+1,k

nj ,k
=

2
ne

✓
2⇡kTme

h2

◆3/2 Uj+1,k

Uj ,k
e��jk /kT . (6.32)

This is the Saha equation. It can be applied to atoms, ion, and
electrons to give the ionization state.

We might think that we need to take into account the density
of momentum states available to the the atom and ion in the same
way as we take into account the density of states of the electron.
However, since both have the same mass, if we include these, we
discover that they cancel.

The Saha equation obviously states that the degree of ioniza-
tion increases with the temperature and decrease with the density
of electrons. However, we can gain a better quantitative feeling
for this by defining nS(T) ⌘ 2(2⇡kTme/h2)3/2 and writing the
Saha equation as

nj+1,k

nj ,k
=

nS
ne

Uj+1,k

Uj ,k
e��jk /kT . (6.33)

The ratio of the partition function is of order unity, so we have
parity between the two ionization states when

kT ⇡ �

ln(nS/ne)
. (6.34)

At 104 K, nS ⇡ 5⇥1021 cm�3, which is orders of magnitude larger
than the electron densities of 1014 cm�3 that are typical of stel-
lar atmospheres. This implies that atoms become substantially
ionized when kT ⇠ �/20 rather than when kT ⇠ � as might
be naively expected. For example, hydrogen begins to be sub-
stantially ionized around �/20k ⇡ 8,000 K rather than around
�/k ⇡ 150,000 K. Consider how di�erent O stars would be if
their atmospheres consisted largely of neutral hydrogen!

Electron Density
In order to solve for the ionization equilibrium using the Saha
equation, we need to electron density, which is in turn determined
by the ionization equilibrium. Once again, we have a coupled
problem.

We consider the gas as consisting of free electrons, bound
electrons, and nuclei. The density of nuclei nn is

nn =
⇢

µnmH
. (6.35)

If we define the number fraction of nuclei of type k as xk ⌘ nk/nn,
the mean molecular mass per nuclei µn is given by

µnmH ⌘
’
k

xkmk . (6.36)

Thus, for a given composition (set of xk) and density, the density
of nuclei is known. We can determine the free electron density
from the requirement that the gas be neutral,

ne =
’
k

’
j

jnjk . (6.37)

Here we take j = 0 for neutral atoms, j = 1 for singly-ionized
ions, and so on. We can define the ionization fraction of each
ionization stage fjk ⌘ njk/nk and write

ne =
’
k

’
j

jnk fjk (6.38)

= nn
’
k

’
j

j xk fjk . (6.39)

We now need an expression for fjk , and in LTE we obtain this from
the Saha equation for the ionization balance between all states of
two subsequent ionization stages,

nj+1,k

nj ,k
=

nS
ne

Uj+1,k

Uj ,k
e��jk /kT (6.40)

=
ñj ,k

ne
, (6.41)

where ñj ,k(T) ⌘ nS(T)(Uj+1,k/Uj ,k)e��jk /kT . Now we can write

nj+1,k

n0,k
=
÷
j0  j

nj0+1,k

nj0,k
=
÷
j0  j

ñj0,k

ne
, (6.42)
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and summing over all ionization states we can obtain the total
density nk of all ions of species k,

nk
n0k

⌘
’
j

njk

n0k
=
’
j

÷
j0< j

ñj0k

ne
. (6.43)

We can combine the previous two equations to obtain the fraction
fjk of atoms in ionization state j relative to all atoms of that
species as

fjk ⌘
njk

nk
=

Œ
j0< j

ñ j0k
neÕ

j0
Œ

j00< j0
ñ j00k
ne

. (6.44)

We can now expand Equation (6.39) as

ne = nn
’
k

’
j

j xk fjk (6.45)

= nn
’
k

’
j

©≠
´

j xk

Œ
j0< j

ñ j0k
neÕ

j0
Œ

j00< j0
ñ j00k
ne

™Æ
¨
. (6.46)

Since nn and T are known, this is an implicit equation for ne.
It can be rearranged as a polynomial in ne, whose order is the
number of stages of ionization present (i.e., quadratic for neutral
and single-ionized species, cubic for neutral, singly-ionized, and
doubly-ionized species, and so on). Except in special cases, the
order will be su�ciently high that cannot solve for ne directly but
instead we must solve for ne iteratively, using standard algorithms
such the Newton-Raphson method (Press et al. 1992, chapter 10).

Application to Hydrogen
The electron density in a pure hydrogen gas can be solved an-
alytically if we consider only neutral and singly-ionized hydro-
gen and ignore H� and all molecules. In this case, x1 = 1,
nn = n01 + n11 = n1, so Equation (6.46) becomes

ne = n1

ñ01
ne

1 + ñ01
ne

, (6.47)

which can be rearranged to give the quadratic equation

n2
e + ñ01ne � ñ01n1 = 0. (6.48)

We anticipated a quadratic equation, because we have two stages
of ionization present. This equation can also be obtained by
considering conservation of nuclei,

n01 + n11 = n1, (6.49)

conservation of electrons combined with the requirement that the
gas be electrically neutral,

ne + n01 = n1, (6.50)

and the Saha equation for the ionization of neutral hydrogen,

n11
n01
=

ñ01
ne
. (6.51)

If these three equations are solved simultaneously for ne in terms
of n1 and ñ01, one obtains the same quadratic equation.

The quadratic equation can be solved exactly to give

ne =
ñ01
2

"✓
1 +

4n1
ñ01

◆1/2
� 1

#
. (6.52)

In the limit of low density or high temperature (i.e., low n1 or high
ñ01) , we have n1 ⌧ ñ01 and so ne ⇡ n1, which corresponds to a
gas that is almost completely ionized. In the limit of high density
or low temperature, we have n1 � ñ01 we have ne ⇡ ñ01/2, which
corresponds to a gas that is almost completely neutral. These
limits correspond to our expectations based on the behavior of the
Saha equation with temperature and density.

Radiative Processes
Bound-Bound Transitions
Bound-bound transitions arise between two bound states, each of
which has a more-or-less well-defined energy and as such give rise
to lines. Bound-bound transitions occur as spontaneous emissions
from an upper state to a lower state, absorptions from a lower state
to an upper state, and stimulated emissions from an upper state to
a lower state.

Einstein Coe�cients

At the atomic level we have spontaneous emission, stimulated
emission, and absorption. The processes of spontaneous emission
and absorption are straightforward and can be represented by

Xu ⌦ Xl + �, (6.53)

with Xu representing the upper level and Xl the lower level. Stim-
ulated emission is not so obvious. It occurs when a photon “stim-
ulates” a particle in the upper state to decay to the lower state and
emit a photon. It can be represented by

Xu + � ! Xl + 2�. (6.54)

In his work on black body radiation, Einstein was forced to pos-
tulate stimulated emission to give the correct form of the Planck
function. Later it was shown to arise naturally from the statistics
of massless bosones particles like the photon, as the probablity
of emission into a state is proportional to 1 plus the number of
bosons in that state (Dirac 1958, sections 61 and 62). The part
proportional to 1 corresponds to spontaneous emission and part
proportional to the number of bosons corresponds to stimulated
emission. The photon created by stimulated emission has the same
direction, frequency, and polarization as the stimulating photon.
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The Einstein coe�cients Aul , Bul , and Blu quantify the strength
of a line in terms of spontaneous emission, stimulated emission,
and absorption. The coe�cients are defined in terms of the prob-
ability per unit time of a transition:

1. The probability of a spontaneous emission per unit time per
unit solid angle per unit frequency for an atom in the upper
state is

1
4⇡

Aul . (6.55)

The function  (⌫) is the emission profile and is normalized
by

π 1

0
d⌫  ⌘ 1. (6.56)

2. The probability of a stimulated emission per unit time per
unit solid angle per unit frequency for an atom in the upper
state is

1
4⇡

Bul I⌫ . (6.57)

3. The probability of an absorption per unit time per unit solid
angle per unit frequency for an atom in the lower state is

1
4⇡

Blu�I⌫ . (6.58)

The function �(⌫) is the absorption profile and is normalized
by

π 1

0
d⌫ � ⌘ 1. (6.59)

Other definitions of the Einstein coe�cients have the probabilities
being the product of the coe�cients and the energy density u⌫ ,
which leads to Bul and Blu di�ering by a factor of c/4⇡ from
those defined here.

In the definition of the Einstein coe�cients, we have carefully
distinguished between the emission profile  and the absorption
profile �. In thermodynamic equilibrium, the principal of detailed
balance requires that emissions and absorptions at each frequency
exactly balance, and so the emission profile  and absorption
profile � must be equal. More generally, when we have complete
redistribution (that is, no correlation between the frequencies of
the absorbed or emitted photons) or when the specific intensity is
constant over the line, the absorption and emission profiles will
be equal. Complete redistribuition is a good approximation for
lines in which the Doppler core dominates, and in these cases we
can assume that the profiles are identical.

However, when we have partial redistribution (that is, cor-
relations between the frequencies of the absorbed and emitted
photons) coupled with changes of the specific intensity over the
line, the absorption and emission profiles can be di�erent. By
their very nature, lines are places where the specific intensity can

vary dramatically, so we need to be wary of partial redistribution.
It can occur in strong lines that are dominated by their wings. In a
strong line, a photon is absorbed and then rapidly re-emited; in the
wing of the line, the frequency of the emitted photon is strongly
correlated with the frequency of the absorbed photon. Roughly,
then, the emission profile will be the product of the absorption
profile and the mean intensity. If the mean intensity varies sig-
nificantly over the line, for example, being small in the core and
large in the wings, the emission profile can be very di�erent from
the absorption profile. Nevertheless, dealing with the di�erence
between the absorption and emission profiles creates significant
additional complexity, and for this reason we’ll often assume that
the two are equal even when this is cannot be justified on physical
grounds.

The Einstein coe�cients are related by the Einstein Relations,
which we can derive by considering the behaviour of a popula-
tion of atoms in thermodynamic equilibrium. In thermodynamic
equilibrium we have detailed balance, and so the rate of upward
radiative transitions at a given frequency and in a given direction
must be exactly balanced by the rate of downward transitions at the
same frequency and in the same direction. The rate of a transition
from one state to a second is simply the number of atoms in the
first state multipled by the probability per unit time of a transition
to the second state. Thus, if the density of atoms in the upper
states is nu and the density of atoms in the lower state is nu , then
we must have

nu(Aul + Bul I⌫) = nlBlu�I⌫ . (6.60)

Furthermore, detailed balance requires that the emission and ab-
sorption profiles be equal and we also have I⌫ = B⌫ , and so

nu(Aul + BulB⌫) = nlBluB⌫ . (6.61)

We can rearrange this to obtain

B⌫ =
Aul/Bul

(nl/nu)(Blu/Bul) � 1
. (6.62)

Since in thermodynamic equlibrium the level populations are
given by a Boltzman distribution, nl/nu = (gl/gu)eE/kT , where
E = h⌫ is the energy di�erence between the levels, we have

B⌫ =
Aul/Bul

(gl/gu)(Blu/Bul)eh⌫/kT � 1
. (6.63)

On the righthand side, the only variables are ⌫ and T ; all other
quantities are constants or properties of the atom that are indepen-
dent of temperature or frequency. Thus, in order for this equation
to hold at all temperatures, we must have

guBul = glBlu (6.64)

and

Aul =
2h⌫3

c2 Bul . (6.65)
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These equations are known as the Einstein relations. They show
that a line has a unique intrinsic strength – which we can choose
to measure by any one of the three Einstein coe�cients. The
intrinsic strength of a line is ultimately derived from the dipole
matrix element between the two states.

The Line Emission and Absorption Coe�cients

We can define the contribution of a single line to the emission
coe�cient j⌫(⌫) to be jL

⌫ (⌫) and the contribution of a single line
to the absorption coe�cient ↵(⌫) to be ↵L.

The Einstein coe�cients give the probability of a transition
per unit time per atom. If we multiply them by the density of atoms
in the initial state, nu or nl , and by the energy of the transition, h⌫,
we obtain the rate of exchange of energy between the radiation
field and matter per unit volume per unit solid angle per unit
frequency. Depending on the direction of the exchange, these are
just the absorption and emission coe�cients. Thus, we have

jL
⌫ =

h⌫
4⇡

Aulnu (6.66)

and

↵L =
h⌫
4⇡

(Blunl� � Bulnu ). (6.67)

Note that we consider stimulated emission to be a negative ab-
sorption. This is mathematically convenient, as it ensures that
the emission remains independent of direct dependence on the
specific intensity and the processes that depend directly on the
specific intensity are gathered in the absorption coe�cient. Phys-
ically, the photon created by stimulated emission has the same
direction, frequency, and polarization as the stimulating photon
and so stimulated emission can be thought of a photon passing an
atom and the result being two photons rather than none, the result
for absorption.

There is one di�erence, however, betweeen absorption and
stimulated emission. The probability for stimulated emission is
proportional to the emission profile  whereas probability of ab-
sorption is proportional to the absorption profile �. In general,
these need not be equal – for example, the absorbing and emitting
atoms might have di�erent velocity distributions – and so in gen-
eral stimulated emission does not correspond exactly to negative
absorption. Nevertheless, we commonly assume that the di�er-
ence between the profiles is not important. In this case, stimulated
emission can be treated exactly as a negative absorption.

We can write the contribution of a single line to the emission
coe�cient j⌫(⌫) and the absorption coe�cient ↵ as

jL
⌫ (⌫) ⌘ jL (⌫) (6.68)

and

↵L(⌫) ⌘ ↵L�(⌫). (6.69)

Here we have ignored the di�erence between the profiles for ab-
sorption and stimulated emission. Because of the normalization
of  and �, we have

jL =

π 1

0
d⌫ jL

⌫ (⌫) (6.70)

and

↵L =

π 1

0
d⌫ ↵L(⌫), (6.71)

and so jL and ↵ are known as the integrated line emission and
aborption coe�cients. We can now see that jL and ↵ characterize
the strength of a line, whereas  and � characterize its shape. In
terms of the Einstein coe�cients, the intergrated coe�cients are
given by

jL =
h⌫
4⇡

Aulnu (6.72)

and

↵L =
h⌫
4⇡

(Blunl � Bulnu). (6.73)

We can use the Einstein relation that glBlu = guBul to write
the integrated emission coe�cient as

↵L =
h⌫
4⇡

Blunl
✓
1 � glnu

gunl

◆
. (6.74)

This has the form of the coe�cient for true absorption multiplied
by a correction factor that accounts for stimulated emission. If
nu/nl > gu/gl we have a population inversion and the absorption
coe�cient becomes negative. In this case, stimulated emission
more than compensates for absorption, and as light passes through
the medium it will be amplified by stimulated emission, producing
a laser or maser (Light or Microwaves Amplified by the Stimulated
Emission of Radiation). This can be seen from the solution to the
equation of radiative transfer: when the extinction coe�cient is
positive, the optical depth also is positive, the e�⌧ factor is less than
1 and diminishes incoming light; when the extinction coe�cient
is negative, when the optical depth is also negative, the e�⌧ factor
is greater than 1 and amplifies incoming light. Masers are often
seen in the dense circumstellar environments of young and old
stars.

In LTE the populations of the upper and lower states have a
Boltzmann distribution, then nu/nl = gu/gle�h⌫/kT , and we have

↵L =
h⌫
4⇡

Blunl(1 � e�h⌫/kT ). (6.75)

The correction factor is thus always positive; we cannot have a
maser when the populations are given by a Boltzmann distribu-
tion. To create a maser, we need non-LTE conditions. Figure
6.3 compares the LTE correction factor for stimulated emission
1 � e�h⌫/kT at 104 K against the Planck function. It also shows
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Figure 6.3: The LTE correction factor for stimulated emission
1 � e�h⌫/kT at 104 K (solid line) compared to a scaled version of
the Planck function (dotted line). Also shown (dashed, right to
left) are the frequencies of Ly↵, H↵, Pa↵, Br↵, and Pf↵.

the positions of Ly↵ (n = 2 ! 1, 1216 Å), H↵ (n = 3 ! 2, 6563
Å), Pa↵ (n = 4 ! 3, 1.875 µm), Br↵ (n = 5 ! 4, 4.051 µm),
and Pf↵ (n = 6 ! 5, 7.458 µm). It shows that the correction for
stimulated emission is negligible in the Wien tail (e.g., for Ly↵),
small but nonetheless not negligible close the peak of the Planck
function (e.g., for H↵), and large in the Rayleigh-Jeans tail (e.g.,
for Pa↵, Br↵, and Pf↵).

In the Rayleigh-Jeans tail we have 1�e�h⌫/kT ⇡ h⌫/kT , which
is small; stimulated emission almost exactly balances absorption.
The increasing importance of stimulated emission means that only
a small over population of the upper level relative to its LTE
value is su�cient to cause the line to mase. For example, in
H II regions the levels of hydrogen have non-LTE populations and
recombination lines such as H72↵ (n = 73 ! 72), which has
a correction factor of only 8.2 ⇥ 10�5 at 104 K, are observed to
mase because even a slight departure of LTE is enough to cause a
population inversion.

Permitted and Forbidden Transitions

In astrophysics we distinguish between permitted and forbidden
transitions. The lines observed in stellar atmospheres are al-
most exclusively permitted lines. Permitted transitions arise from
electric dipole transitions and have a high probability, with Aul

typically being of order unity, whereas forbidden transitions arise
from electric quadrupole or magnetic dipole transitions and have
lower probabilities, with Aul typically being 10�3 or less. The
rules on the changes in quantum number that produce permitted
rather than forbidden transitions are known as selection rules.

Forbidden lines are rarely seen in absorption because they are
so weak; recall that ↵L is directly proportional to Blu , which in
turn is directly proportional to Aul . Thus, forbidden absorption
lines will be many orders of magnitude weaker than permitted
absorption lines, and are only detectable in spectral with excellent
signal-to-noise ratios.

Stellar emission lines most often arise in the chromosphere and
winds. Permitted lines are again typically the strongest. The prob-
ability of a forbidden transition is relatively low, so an atom has to
spend a relatively long time (typically A�1

lu or longer than 1000 s)
in an excited state before it can emit by a forbidden transition.
In this time, at the relatively high densities in the photosphere,
chromosphere, and even the wind, the atom is likely to undergo
a collision, which can de-excite it without emitting a photon. We
say that at these high densities the lines are collisionally quenched.

Oscillator Strengths

Absorption lines can be modelled classically as the interaction of
photons with oscillating electrons. The result is adequate in some
aspects, but its major failing of the model is that it predicts that
all lines have the same strength. This is because it attributes only
one characteristic – energy di�erence – to a transition. However,
quantum mechanics shows us that an equally important character-
istic is the dipole element.

An ad hoc solution to this problem is to attribute an oscil-
lator strength to each line, and to arbitrarily modify the model
line strengths by multiplying them by this factor. The oscillator
strengths are determined by requiring that the modified model
line strengths match the the true line strengths, determined from
quantum mechanical calculation, laboratory experiment, or astro-
physical observation. The classical absorption oscillator strength
flu is defined in terms of Einstein coe�cient Blu by

Blu =
4⇡2e2

h⌫mec
flu . (6.76)

An equivalent emission oscillator strength ful can be defined in
terms of Bul . Oscilator strengths are always given in the combina-
tion g f , the degeneracy of the originating state multiplied by the
oscilator strength for the transition, as the Einstein relation that
guBul = glBlu implies that gu ful = gl flu . The oscilator strength
has no direct physical meaning beyond quantifying the relative
strengths of lines; it is simply the empirical correction factor we
have to apply to an incorrect theory in order to obtain the correct
result. Nonetheless, for reasons of precedent, line strengths are
still often given in terms of the oscillator strengths.

From the definition of the oscilator strength, we can see that
the integrated absorption coe�cient is given by

↵L = nl flu
✓
⇡e2

mec

◆ ✓
1 � glnu

gunl

◆
, (6.77)

in which the last factor is the correction for stimulated emission,
and the integrated emission coe�cient is given by

jL =

✓
2h⌫3

c2

◆
nu ful

✓
⇡e2

mec

◆
. (6.78)

Determination of Oscillator Strengths

[Quantum mechanical calculations. Exact for H and H-F for
others. R-L p.2̃76 say why we need good wave functions. Coulomb
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approximation? Laboratory measurements. Observations. Sum
rules. Give table of oscillator strengths for some common lines.]

Bound-Free and Free-Bound Transitions
[The stu� in Osterbrock on heavy-element ionization and dielec-
tronic recombination is good.]

Bound-free radiative transitions correspond to photoioniza-
tions and free-bound radiative transitions to recombinations. They
can be represented by

X+ + e� ⌦ X + �. (6.79)

As with bound-bound transitions, there is a stimulated recombi-
nation process which can be represented by

X+ + e� + � ! X + 2�. (6.80)

Rate of photoionizations per unit volume per unit frequency
per unit solid angle is

1
h⌫

ab f (1 � e�h⌫/kT )I⌫nn (6.81)

[The second part is stimulated recombination. I’m not sure
why it has exactly this form.]

Rate of radiative recombinations per unit volume per unit
velocity is

ninea f b(v) f (v)v (6.82)

Milne Relations

In TE and using detailed balance, we have
ab f
a f b
=

nine
nn

h⌫ f (v)v
4⇡(1 � e�h⌫/kT )B⌫

dv
d⌫

(6.83)

=
nine
nn

eh⌫/kT
f (v)vc2

8⇡⌫2
dv
d⌫

(6.84)

and h⌫ = mv2/2 + �, so hd⌫ = mvdv, so

ab f
a f b
=

nine
nn

eh⌫/kT
f (v)hc2

8⇡me⌫2 . (6.85)

But Maxwell says

f (v) = 4⇡
⇣ me

2⇡kT

⌘3/2
v2e�mv2/2kT (6.86)

and Saha says

nine
nn
= 2

✓
2⇡mekT

h2

◆3/2
gi
gn

e��/kT (6.87)

Thus,
ab f
a f b
=

m2
ec2v2

⌫2h2
gi
gn

e(h⌫�mv2/2��)/kT (6.88)

and since h⌫ = mv2/2 � �,

ab f
a f b
=

gi
gn

m2
ec2v2

⌫2h2 . (6.89)

Emission and Absorption Coe�cients
As above,

↵b f = nnab f (1 � e�h⌫/kT ) (6.90)

and

jb f⌫ =
h⌫
4⇡

ninea f b(v) f (v)vdv/d⌫ (6.91)

Determination

Determination again proceeds mainly from QM using similar
methods to those for BB transitions. Having obtained ab f , we
can use the Milne relation to obtain ab f .

For hydrogen-like transition, ionization from a state with a
given n has

ab f =
✓

64⇡n
3
p

3Z2

◆
↵a2

0(⌫n/⌫)3gb f (⌫,n, l, Z) (6.92)

where ↵ ⌘ e2/~c, a0 = ~2/me2, h⌫n = �n and the Gaunt factor g
is close to 1 near the edge and decreases with increasing ⌫.

Free-Free Transitions

↵ f f =
4e4

3mhc

✓
2⇡

3km

◆1/2
T�1/2Z2neni⌫�3(1 � e�h⌫/kT )ḡf f

(6.93)

j f f⌫ = B⌫↵
f f . (6.94)

Electron Scattering
The cross-section for scattering is constant at non-relativistic
wavelength and each electron contributes a cross-section of

aT =
8⇡e4

3m2
e c4
= 6.652 ⇥ 10�25 cm2, (6.95)

so the scattering coe�cient is given in terms of the free electron
density ne by

� = neaT. (6.96)

At relativistic energies (� < 1Å or h⌫ > 10keV), the cross-section
is smaller and is given by the Klein-Nishina formula.

Electron scattering is only strictly coherent in the rest frame
of the electron, and electrons can impart a small change in energy
either because of their thermal motions (leading to a broaden-
ing of the frequencies of scattered photons) or their bulk motion
(leading to a systematic shift in the frequencies of scattered pho-
tons). In stellar photospheres, the electrons are relatively cool.
The cool electrons will lead to relatively small broadening of the
frequencies of the scattered photons, and will be insignificant if
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the spectrum is smooth. Thus, when considering the continuum,
a good approximation is to ignore the incoherence. However, if
we have relativistic electrons or if electron scattering becomes
important at the frequency of a line, as it can in winds, we cannot
ignore the incoherence.

The phase function is not isotropic, but neverthess we often
assume it is.

� = neaT (6.97)

j⌫ = neaTJ⌫ = �J⌫ (6.98)

Notes and Further Reading
Partition Functions
Mihalas (1978, §5-1 and §9-4), Shu (1991, p. 62–63), Shu (1992,
p. 8–10), andHummer & Mihalas (1988) discuss the lowering of
the ionization potential in the presence of neighbors. Gray (1992,
appendix D) gives polynomial approximations for the partition
functions of atoms and ions in atmospheres.


